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Study Design Samples

Random Sample

Definition

A random sample (with size n) is a set of n independent, identically
distributed random variables:

X1, . . . ,Xn

Extra notation:

x1, . . . , xn is the random data, which is the ’observed value’ of the
random sample.

X is ’representative’ for this sample if fX (x) = fXi
(x) for all i
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Study Design Samples

Statistics

Definition (Statistic)

For a random sample X1, . . . ,Xn, a statistic is just a function of the sample.

Example (Common Statistics)

Sample mean: X = 1
n

∑n
i=1 Xi

Sample variance: S2 = 1
n−1

∑n
i=1(Xi − X )2

Sample median: X0.5
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Study Design Samples

The Sample Mean

Theorem (Properties of the Sample Mean)

Let X1, . . . ,Xn be a random sample, with mean µ and variance σ2. Then,

E[X ] = µ Var(X ) =
σ2

n
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Study Design Samples

The Sample Mean

Example (2901)

Prove that Var(X ) = σ2

n as stated just now.

Var
(
X
)

= Var

(
1

n

n∑
i=1

Xi

)

=
1

n2
Var

(
n∑

i=1

Xi

)

=
1

n2

n∑
i=1

Var(Xi ) (indep.)

=
1

n2
· nσ2 =

σ2

n
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Study Design Samples

Efficiency of Statistics (2801)

Definition (Efficiency)

Let g(X1, . . . ,Xn) and h(Y1, . . . ,Ym) be two distinct unbiased statistics.

g(X1, . . . ,Xn) is more efficient than h(Y1, . . . ,Ym) if it has smaller
variance, i.e.

Var[g(X1, . . . ,Xn)] < Var[h(Y1, . . . ,Ym)]

Remark: This means we can use different statistics, or sample differently, to
increase efficiency.
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Study Design Samples

Sampling methods

Simple random sample - Sampling in a so that all possible samples are
equally likely. (Can be hard to do in practice)

Stratified random sample - As above, but dividing into subclasses of
samples beforehand (e.g. age)

Cluster sampling - Sampling in small groups
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Study Design Samples

Experimental Design (2801)

Observational study - We don’t manipulate any variables.

Experiment - We manipulate some variables and observe what happens
to a ’response’ variable.
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Study Design Samples

Experimental Design (2801)

Important features to include in experiments:

Compare - showing a change in one variable influences a change in
another (e.g. via placebo)

Randomise - minimise the influences of other factors (e.g. gender)

Repetition
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Study Design Samples

Remark (2801)

I’ve never seen this be examined...?
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Statistical Inference Estimators and their Properties

Estimators

Let X1, . . . ,Xn be a random sample with model {fX (x ; θ) : θ ∈ Θ}.

Definition (Estimator)

An estimator for the parameter θ, denoted θ̂, is just a real valued function
of the random sample.

θ̂ = θ̂(X1, . . . ,Xn)

Meaning, fundamentally it’s just a statistic.
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Statistical Inference Estimators and their Properties

Estimators

Basically, we want to narrow our focus to useful estimators.

Because estimators are functions of random variables, the estimator itself is
a random variable.
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Statistical Inference Estimators and their Properties

Bias

Remember that θ is a parameter, so it’s constant. Whereas θ̂ is an
estimator, which is a r.v.

Definition (Bias)

Given an estimator θ̂ for θ, its bias is

bias(θ̂) = E[θ̂]− θ.

The estimator is ’unbiased’ if bias(θ̂) = 0.

Significance

An estimator is ’biased’ when it has a tendency of estimating a little bit off
what the actual value of the parameter is. The bias measures how much it
tends to be off by.
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Statistical Inference Estimators and their Properties

Bias

Example

Let X1, . . . ,X7 be a random Poisson(λ) sample, and consider the estimator

λ̂ =
1

28

7∑
i=1

i Xi =
X1 + 2X2 + · · ·+ 7X7

28

for λ. Is this estimator unbiased?

We compute:

E[λ̂] = E
[
X1 + 2X2 + · · ·+ 7X7

28

]

=
1

28
E[X1 + 2X2 + · · ·+ 7X7]

=
1

28
(E[X1] + 2E[X2] + · · ·+ 7E[X7])

=
1

28
(λ+ 2λ+ · · ·+ 7λ)

=
1

28
× 28λ = λ
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Statistical Inference Estimators and their Properties

Bias

We compute:

E[λ̂] = E
[
X1 + 2X2 + · · ·+ 7X7

28

]
=

1

28
E[X1 + 2X2 + · · ·+ 7X7]

=
1

28
(E[X1] + 2E[X2] + · · ·+ 7E[X7])

=
1

28
(λ+ 2λ+ · · ·+ 7λ)

=
1

28
× 28λ = λ

Hence bias(λ̂) = λ− λ = 0 and thus it is unbiased.
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Statistical Inference Estimators and their Properties

Standard Error (2801 ver)

Definition (Standard Error)

se(θ̂) =
√

Varθ̂(θ̂)

Significance

Basically adapted from the significance of the variance; it measures just how
much error the estimator is susceptible to.

Steps:

1 Compute Var(θ̂) the usual way

2 Square root it

3 For the standard error, replace θ with θ̂.
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Statistical Inference Estimators and their Properties

Standard Error (2801 ver)

Example

For the earlier example λ̂ = X1+2X2+···+7X7
28 , find se(λ̂).

Var(λ̂) = Var

(
X1 + 2X2 + · · ·+ 7X7

28

)
=

1

282
(Var(X1) + 4 Var(X2) + · · ·+ 49 Var(X7)) (indep.)

=
1

282
× 140λ =

5

28
λ.

Therefore se(λ̂) =

√
5λ̂
28 .
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Statistical Inference Estimators and their Properties

Standard Error (2901 ver)

Definition (Standard Error)

se(θ̂) =

√
Var(θ̂)

Definition (Estimated Standard Error)

ŝe(θ̂) = se(θ̂), evaluated at θ = θ̂
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Statistical Inference Estimators and their Properties

Standard Error (2901 ver)

Example

For the earlier example λ̂ = X1+2X2+···+7X7
28 , find se(λ̂) and ŝe(λ̂).

Recycling earlier computations...

se(λ̂) =

√
5λ

28

which implies that

ŝe(λ̂) =

√
5λ̂

28
.
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Statistical Inference Estimators and their Properties

Mean Squared Error

Definition (Mean Squared Error)

Given an estimator θ̂ for θ, its mean squared error is

MSE(θ̂) = E[(θ̂ − θ)2].

Theorem (MSE Formula)

MSE(θ̂) = [bias(θ̂)]2 + Var(θ̂).

Definition (Estimated Mean Square Error) (2801)

M̂SE(θ̂) = [bias(θ̂)]2 + [se(θ̂)]2.

Rui Tong (UNSW Society of Statistics) MATH2801/2901 Final Revision 30 May 2018 16 / 75



Statistical Inference Estimators and their Properties

Mean Squared Error formula - Proof (2901)

MSE(θ̂) = E[(θ̂ − θ)2]

= E
[(

(θ̂−E[θ̂]) + (E[θ̂]− θ)
)2
]

= E
[
(θ̂ − E[θ̂])2

]
+ E

[
(E[θ̂]− θ)2

]
+ 2E

[
(θ̂ − E[θ̂])(E[θ̂]− θ)

]
from expanding the perfect square. Note that E[(θ̂ − E[θ̂])] = Var(θ̂) by
definition, and

E
[
(E[θ̂]− θ)

]
= E[bias(θ̂)2] = bias(θ̂)2.

(Q: Why was I allowed to take off the expected value brackets?)
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Statistical Inference Estimators and their Properties

Mean Squared Error formula - Proof (2901)

As for the leftover bit:

2E
[
(θ̂ − E[θ̂])(E[θ̂]− θ)

]
= 2

(
E[θ̂]− θ

)
E
[
θ̂ − E[θ̂]

]
...but

E
[
θ̂ − E[θ̂]

]
= E[θ̂]− E[θ̂] = 0.

Make sure to remember all your properties of the expected value!
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Statistical Inference Estimators and their Properties

Mean Squared Error formula - ”Proof” (2901)
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Statistical Inference Estimators and their Properties

Mean Squared Error

Example

For the earlier example λ̂ = X1+2X2+···+7X7
28 , find MSE(λ̂).

MSE(λ̂) = Var(λ̂) + bias(λ̂)2 =
5λ

28
+ 02 =

5λ

28
.
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Statistical Inference Estimators and their Properties

”Better” Estimators

Significance of MSE

Demonstrates a trade-off between the variance and the bias.

Better estimators in the MSE sense

Between two estimators θ̂1 and θ̂2, θ̂1 is better (w.r.t. MSE), at some
specific value of θ, if

MSE(θ̂1) < MSE(θ̂2)
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Statistical Inference Estimators and their Properties

”Better” Estimators

Example

Let λ̂1 be the estimator that we found earlier, with MSE(λ̂1) = 5λ
28 . Now let

λ̂2 = X . For what values of λ is λ2 better than λ1?

We can compute:

bias(λ̂2) = 0

Var(λ̂2) =
λ

7

∴ MSE(λ̂2) =
λ

7
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Statistical Inference Estimators and their Properties

”Better” Estimators

Example

Let λ̂1 be the estimator that we found earlier, with MSE(λ̂1) = 5λ
28 . Now let

λ̂2 = X . For what values of λ is λ2 better than λ1?

MSE(λ̂2) =
λ

7

Solving MSE(λ̂2) < MSE(λ̂1) gives

λ

7
>

5λ

28
=⇒ λ > 0.
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Statistical Inference Estimators and their Properties

Application - Sample Proportion

Theorem (Properties of the Sample Mean)

Let X1, . . . ,Xn be a random sample from the Ber(p) distribution. Then the
sample proportion p̂ = No. of successes

No. of trials satisfies:

E[p̂] = p

Var(p̂) =
p(1− p)

n

se(p̂) =

√
p̂(1− p̂)

n
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Statistical Inference Estimators and their Properties

Consistency

A sequence of random variables X1, . . . ,Xn converges in probability to X ,

i.e. Xn
P→ X , if ∀ε > 0,

lim
n→∞

P(|Xn − X | > ε) = 0.

Definition (Consistent Estimator)

θ̂n is a consistent estimator for θ if it converges in probability to θ. i.e.

θ̂n
P→ θ
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Statistical Inference Estimators and their Properties

Verifying that an estimator is consistent

Theorem (Sufficient criteria for consistency)

If
lim
n→∞

MSE(θ̂n) = 0

then θ̂n is a consistent estimator for θ.

Quick example: Consider the mean proportion X = 1
n

∑n
i=1 Xi for µ. Then

MSE(θ̂n) = Var(θ̂n) + bias(θ̂n)2 =
σ2

n
+ 02 =

σ2

n
.

Clearly limn→∞MSE(θ̂n) = 0 so the sample mean is a consistent estimator
for µ.

Rui Tong (UNSW Society of Statistics) MATH2801/2901 Final Revision 30 May 2018 22 / 75



Statistical Inference Estimators and their Properties

Equivariance

Definition (Equivariance Estimator)

θ̂n is an equivariant estimator for θ if g(θ̂n) is an estimator for g(θ).

(Only really useful for the MLE.)
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Statistical Inference Estimators and their Properties

Asymptotic Normality

A sequence of random variables X1, . . . ,Xn converges in distribution to X ,

i.e. Xn
D→ X , if

lim
n→∞

FXn(x)→ FX (x).

Definition (Asymptotically Normal Estimator)

θ̂n is an asymptotically normal estimator for θ if

θ̂n − θ
se(θ̂)

D→ N (0, 1)

2901 note: This is an abuse of notation. But we don’t care.
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Statistical Inference Estimators and their Properties

Remark

You don’t need to know how to prove these, just how to use it... (soon)
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Statistical Inference More work with Convergence

Convergence Theorems

Central Limit Theorem

For a random sample X1, . . . ,Xn with mean µ and finite variance σ,

X − µ
σ√
n

D→ N (0, 1)

Slutsky’s Theorem

Suppose we have two sequences of random variables (or random samples)
with:

Xn
D→ X Yn

P→ c

where c is a constant. Then,

Xn + Yn
D→ X + c XnYn

D→ cX
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Statistical Inference More work with Convergence

The Delta Method

Theorem (Provided on formula sheet!!)

Let θ̂1, θ̂2, . . . be a sequence of estimators (or a sequence of random
variables) of θ such that

θ̂n − θ
σ√
n

D→ N (0, 1).

Then, for any function g that is differentiable at θ, with g ′(θ) 6= 0,

g(θ̂n)− g(θ)

g ′(θ) σ√
n

D→ N (0, 1)
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Statistical Inference More work with Convergence

The Delta Method

Example

Suppose β̂1, β̂2, . . . is a sequence of i .i .d . Exp(β) random variables. Find
the ’asymptotic distribution’ of ln β̂n.

From the CLT and the formula sheet:

β̂n − β
β√
n

D→ N (0, 1)
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Statistical Inference More work with Convergence

The Delta Method

Example

Suppose β̂1, β̂2, . . . is a sequence of i .i .d . Exp(β) random variables. Find
the ’asymptotic distribution’ of ln β̂n.

From the CLT and the formula sheet:

β̂n − β
β√
n

D→ N (0, 1)

We know β ∈ (0,∞), so ln is differentiable at β. Also (lnβ)′, i.e. β−1,
never equals 0. So we can use the Delta method:

ln β̂n − lnβ
1
β ·

β√
n

D→ N (0, 1).
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Statistical Inference More work with Convergence

The Delta Method

Example

Suppose β̂1, β̂2, . . . is a sequence of i .i .d . Exp(β) random variables. Find
the ’asymptotic distribution’ of ln β̂n.

Use the properties of the normal distribution!

√
n
(

ln β̂n − lnβ
)
D→ N (0, 1)

ln β̂n − lnβ
D→ N

(
0,

1

n

)

ln β̂n
D→ N

(
lnβ,

1

n

)

Rui Tong (UNSW Society of Statistics) MATH2801/2901 Final Revision 30 May 2018 28 / 75



Statistical Inference More work with Convergence

The Delta Method

Example

Suppose β̂1, β̂2, . . . is a sequence of i .i .d . Exp(β) random variables. Find
the ’asymptotic distribution’ of ln β̂n.

Use the properties of the normal distribution!

√
n
(

ln β̂n − lnβ
)
D→ N (0, 1)

ln β̂n − lnβ
D→ N

(
0,

1

n

)

ln β̂n
D→ N

(
lnβ,

1

n

)

Rui Tong (UNSW Society of Statistics) MATH2801/2901 Final Revision 30 May 2018 28 / 75



Statistical Inference More work with Convergence
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Statistical Inference Confidence Intervals

Confidence Intervals (Generic Definition)

In a confidence interval, we put the parameter in the middle, instead of the
random variable.

Definition (Confidence Interval)

For a random sample X1, . . . ,Xn with parameter θ, if

P(L < θ < U) = 1− α

for some statistics (estimators) L and U, then a 100(1− α)% confidence
interval for θ is

(L,U)

Note: α is just a percentage!
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Statistical Inference Confidence Intervals

Confidence Intervals (Generic Definition)

”Example” (Setting α = 0.05)

For a random sample X1, . . . ,Xn with parameter θ, if

P(L < θ < U) = 0.95

for some estimators L and U, then a 95% confidence interval for θ is

(L,U)

Rui Tong (UNSW Society of Statistics) MATH2801/2901 Final Revision 30 May 2018 29 / 75



Statistical Inference Confidence Intervals

Approximate CI’s via Asymptotic Normality

Notation (z-value)

zα represents the α-th quantile of Z ∼ N (0, 1), i.e it satisfies

P(Z < zα) = α

Corollary (Approximate CI)

For a random sample X1, . . . ,Xn with parameter θ, if θ̂n is a consistent and
asymptotically normal estimator of θ, then(

θ̂n − z1−α
2

se(θ̂), θ̂n + z1−α
2

se(θ̂)
)

is a 100(1− α)% confidence interval for θ.
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Statistical Inference Confidence Intervals

Approximate CI’s via Asymptotic Normality

”Example” (Setting α = 0.05)

For a random sample X1, . . . ,Xn with parameter θ, if θ̂n is a consistent and
asymptotically normal estimator of θ, then(

θ̂n − z0.975 se(θ̂), θ̂n + z0.975 se(θ̂)
)

is a 95% confidence interval for θ.
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Statistical Inference Confidence Intervals

Approximate CI’s via Asymptotic Normality

Example (Adapted from Tutorial)

Consider a random sample X1, . . . ,Xn from the Poisson(λ) distribution.
Take λ̂ = X , i.e. use the sample mean as an estimator. Find a 95%
approximate confidence interval for λ.

Method 1: Directly use the formula: The sample mean is always consistent
and asymptotically normal. Recall that Var(Xi ) = λ and since our estimator
is the sample mean,

Var(λ̂) = Var(X ) =
λ

n

so therefore

se(λ̂) =

√
λ̂

n

2901 note: This is actually ŝe(λ̂)!
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Statistical Inference Confidence Intervals

Approximate CI’s via Asymptotic Normality

Example (Adapted from Tutorial)

Consider a random sample X1, . . . ,Xn from the Poisson(λ) distribution.
Take λ̂ = X , i.e. use the sample mean as an estimator. Find a 95%
approximate confidence interval for λ.

(In case you forgot...) According to R,

z0.975 = qnorm(0.975) = 1.959964

so an approximate confidence interval isX − 1.96

√
λ̂

n
,X + 1.96

√
λ̂

n


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Statistical Inference Confidence Intervals

Approximate CI’s via Asymptotic Normality

Example (Adapted from Tutorial)

Consider a random sample X1, . . . ,Xn from the Poisson(λ) distribution.
Take λ̂ = X , i.e. use the sample mean as an estimator. Find a 95%
approximate confidence interval for λ.

Method 2: Derive it on the day: Again, because the sample mean is
consistent and asymptotically normal, noting that Var(Xi ) = λ:

λ̂− λ√
λ̂
n

D→ N (0, 1)

Therefore

P

z0.025 <
λ̂− λ√

λ̂
n

< z0.975

 = 0.95
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Statistical Inference Confidence Intervals

Approximate CI’s via Asymptotic Normality

Note that z0.025 = −z0.975 . Rearrange to make λ the subject:

−z0.975 <
λ̂− λ√

λ̂
n

< z0.975

−

√
λ̂

n
z0.975 < λ̂− λ <

√
λ̂

n
z0.975

−

√
λ̂

n
z0.975 < λ− λ̂ <

√
λ̂

n
z0.975

λ̂−

√
λ̂

n
z0.975 < λ < λ̂+

√
λ̂

n
z0.975

Be very careful going from line 2 to line 3!
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Statistical Inference Confidence Intervals

Approximate CI’s via Asymptotic Normality

Example (Adapted from Tutorial)

Consider a random sample X1, . . . ,Xn from the Poisson(λ) distribution.
Take λ̂ = X , i.e. use the sample mean as an estimator. Find a 95%
approximate confidence interval for λ.

Therefore we can rewrite:

P

λ̂−
√
λ̂

n
z0.975 < λ < λ̂+

√
λ̂

n
z0.975

 = 0.95

so a 95% confidence interval isλ̂−
√
λ̂

n
z0.975, λ̂+

√
λ̂

n
z0.975


(Then just sub everything in.)
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Statistical Inference Confidence Intervals

Follow-up question

Example (contd. from Tutorial)

For the confidence interval above, suppose that for a sample size of 30 the
observed values are:

8 2 5 5 8 6 7 2 4 8 4 2 8 4 5 3 3 6 8 3 6 5 5 4 6 3 7 5 1 5

Under these observed values, what is the relevant confidence interval?

From the calculator, the mean of this data is 148
30 , so subbing X = 148

30 and
n = 30 gives(

148/30− 1.96×
√

148/30

30
, 148/30 + 1.96×

√
148/30

30

)

which is approximately (4.1385, 5.7281)
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Statistical Inference Confidence Intervals

Behaviour of the approximate CI

The confidence interval becomes smaller when we increase n, i.e. add more
samples!

A 99% confidence interval is wider than a 95% confidence interval. Why?
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Statistical Inference Confidence Intervals

Aside: Alternate forms of the CI (Mostly 2901)

The confidence interval(
θ̂n − z0.975 se(θ̂), θ̂n + z0.975 se(θ̂)

)
can be re-expressed as(

θ̂n + z0.025 se(θ̂), θ̂n − z0.025 se(θ̂)
)

or as (
θ̂n + z0.025 se(θ̂), θ̂n + z0.975 se(θ̂)

)
...what else? And why?
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Statistical Inference Confidence Intervals

Aside: ”Symmetry” of CI’s (Mostly 2901)

They actually don’t need to be symmetric.

In fact, confidence intervals are never unique!
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Statistical Inference Common Estimators

Method of Moments

Suppose we need to estimate k parameters: θ1, . . . , θk .

Definition (Method of Moments Estimator)

Consider the system of equations

E[X ] =
1

n

n∑
i=1

Xi , E[X 2] =
1

n

n∑
i=1

X 2
i , . . . E[X k ] =

1

n

n∑
i=1

X k
i .

The method of moments estimator is the solution to this system of
equations.

The method of moments estimate is the observed value of the estimator.
This is found by replacing Xi with xi .
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Statistical Inference Common Estimators

Method of Moments - Other way around

Suppose we need to estimate k parameters: θ1, . . . , θk .

Definition (Method of Moments Estimate)

Consider the system of equations

E[X ] =
1

n

n∑
i=1

xi , E[X 2] =
1

n

n∑
i=1

x2
i , . . . E[X k ] =

1

n

n∑
i=1

xki .

The method of moments estimate is the solution to this system of
equations.

The method of moments estimator is the original estimator in question.
This is found by replacing xi with Xi .
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Statistical Inference Common Estimators

Method of Moments

Example (2901 Assignment, 2017)

Let θ be a parameter satisfying θ > −1. Let X1, . . . ,Xn be i.i.d. random
variables with PDF

fXi
(θ) = (θ + 1)xθ, 0 < x < 1

for i = 1, . . . , n. Find the method of moments estimator for θ.

How many parameters to estimate?
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Statistical Inference Common Estimators

Method of Moments

Example (2901 Assignment, 2017)

Let θ be a parameter satisfying θ > −1. Let X1, . . . ,Xn be i.i.d. random
variables with PDF

fXi
(θ) = (θ + 1)xθ, 0 < x < 1

for i = 1, . . . , n. Find the method of moments estimator for θ.

Only 1 parameter, therefore we only need one equation:

E[X ] =
1

n

n∑
i=1

xi .
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Statistical Inference Common Estimators

Method of Moments

Example (2901 Assignment, 2017)

Let θ be a parameter satisfying θ > −1. Let X1, . . . ,Xn be i.i.d. random
variables with PDF

fXi
(θ) = (θ + 1)xθ, 0 < x < 1

for i = 1, . . . , n. Find the method of moments estimator for θ.

E[X ] =

∫ 1

0
x(θ + 1)xθ dx

=

∫ 1

0
(θ + 1)xθ+1 dx

=
θ + 1

θ + 2
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Statistical Inference Common Estimators

Method of Moments

Example (2901 Assignment, 2017)

Let θ be a parameter satisfying θ > −1. Let X1, . . . ,Xn be i.i.d. random
variables with PDF

fXi
(θ) = (θ + 1)xθ, 0 < x < 1

for i = 1, . . . , n. Find the method of moments estimator for θ.

So we solve:
θ + 1

θ + 2
= x

θ + 1 = xθ + 2x

θ − xθ = 2x − 1

θ =
2x − 1

1− x
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Statistical Inference Common Estimators

Method of Moments

Example (2901 Assignment, 2017)

Let θ be a parameter satisfying θ > −1. Let X1, . . . ,Xn be i.i.d. random
variables with PDF

fXi
(θ) = (θ + 1)xθ, 0 < x < 1

for i = 1, . . . , n. Find the method of moments estimator for θ.

Therefore the method of moments estimator is

θ̂ =
2X − 1

1− X
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Statistical Inference Common Estimators

Properties of the Method of Moments Estimator

The estimator is

Consistent

Under ’nice’ conditions, asymptotically normal
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Statistical Inference Common Estimators

Likelihood function

Likelihood Function

For observations x1, . . . , xn in a random sample, the likelihood function is

L(θ) =
n∏

i=1

f (xi )

Log-likelihood function

For observations x1, . . . , xn in a random sample, the log-likelihood function
is

`(θ) = lnL(θ) =
n∑

i=1

ln[f (xi )]
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Statistical Inference Common Estimators

Maximum Likelihood Estimator (MLE)

Definition (Maximum Likelihood Estimator)

θ̂ is the MLE of θ that maximises the likelihood function L(θ).

Theorem (Computation of the MLE)

θ̂ also maximises the log-likelihood function `(θ)
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Statistical Inference Common Estimators

Maximum Likelihood Estimator (MLE)

Example (2901 Assignment, 2017)

Let θ > −1 and X1, . . . ,Xn be i.i.d. r.v.s with PDF

fXi
(θ) = (θ + 1)xθ, 0 < x < 1

Find θMLE

`(θ) =
n∑

i=1

ln[(θ + 1)xθi ]

=
n∑

i=1

[ln(θ + 1) + θ ln(xi )]

= n ln(θ + 1) + θ
n∑

i=1

ln(xi )
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Statistical Inference Common Estimators

Maximum Likelihood Estimator (MLE)

Example (2901 Assignment, 2017)

Let θ > −1 and X1, . . . ,Xn be i.i.d. r.v.s with PDF

fXi
(θ) = (θ + 1)xθ, 0 < x < 1

Find θMLE

`(θ) =
n∑

i=1

ln[(θ + 1)xθi ]

=
n∑

i=1

[ln(θ + 1) + θ ln(xi )]

= n ln(θ + 1) + θ

n∑
i=1

ln(xi )
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Statistical Inference Common Estimators

Maximum Likelihood Estimator (MLE)

Example (2901 Assignment, 2017)

Let θ > −1 and X1, . . . ,Xn be i.i.d. r.v.s with PDF

fXi
(θ) = (θ + 1)xθ, 0 < x < 1

Find θMLE

Remember, ` is a function of θ.

`′(θ) =
n

θ + 1
+

n∑
i=1

ln xi
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Statistical Inference Common Estimators

Maximum Likelihood Estimator (MLE)

Example (2901 Assignment, 2017)

Let θ > −1 and X1, . . . ,Xn be i.i.d. r.v.s with PDF

fXi
(θ) = (θ + 1)xθ, 0 < x < 1

Find θMLE

Set `′(θ) = 0.

n

θ + 1
+

n∑
i=1

ln xi = 0

1

θ + 1
= −1

n

n∑
i=1

ln xi

θ = −1−

(
1

n

n∑
i=1

ln xi

)−1
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Statistical Inference Common Estimators

Where everybody loses marks

Use the second derivative!

Things are problematic if you found the minimum instead...
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Statistical Inference Common Estimators

...
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Statistical Inference Common Estimators

memes...
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Statistical Inference Common Estimators

Maximum Likelihood Estimator (MLE)

Example

Let θ > −1 and X1, . . . ,Xn be i.i.d. r.v.s with PDF

fXi
(θ) = (θ + 1)xθ, 0 < x < 1

Find θMLE

`′(θ) =
n

θ + 1
+

n∑
i=1

ln(xi )︸ ︷︷ ︸
constant w.r.t. θ

`′′(θ) = − n

(θ + 1)2
< 0

Hence θMLE = −1−
(

1
n

∑n
i=1 lnXi

)−1
(note the capital X )
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Statistical Inference Common Estimators

Properties of the MLE

Equivariant: g(θMLE ) is also the MLE of g(θ)

Asymptotically normal

Consistent (in this course)

*Asymptotically optimal
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Statistical Inference Common Estimators

The Fisher Information

Definition (2901)

Let `(θ) be the log-likelihood function of a random sample. The Fisher
score is just its defined as:

Sn(θ) = `′(θ).

Definition

The Fisher information is defined as

In = −E[`′′(θ)]

where we swap out xi for Xi .

Theorem (Alternate definition of Fisher Information)

In = E[`′(θ)]2
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Statistical Inference Common Estimators

The Fisher Information

Example

For the earlier example, with `′(θ) = n
θ+1 +

∑n
i=1 ln(Xi ), what is its Fisher

information?

−E[`′′(θ)] = −E
[
− n

(θ + 1)2

]
=

n

(θ + 1)2
.
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Statistical Inference Common Estimators

The Fisher Information

Example

Find In(θ) if you’re told that E[Xi ] = θ and

`′(θ) = e−θ + θ

n∑
i=1

xi .

The second derivative, with xi replaced by Xi , is

`′′(θ) = −e−θ +
n∑

i=1

Xi

so its Fisher information is

In(θ) = E

[
e−θ −

n∑
i=1

Xi

]

= e−θ −
n∑

i=1

E[Xi ] (Why?)

= e−θ −
n∑

i=1

θ

= e−θ − nθ
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Statistical Inference Common Estimators

The Fisher Information

The second derivative, with xi replaced by Xi , is

`′′(θ) = −e−θ +
n∑

i=1

Xi

so its Fisher information is

In(θ) = E

[
e−θ −

n∑
i=1

Xi

]

= e−θ −
n∑

i=1

E[Xi ] (Why?)

= e−θ −
n∑

i=1

θ

= e−θ − nθ
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Statistical Inference Common Estimators

The Fisher Information

The second derivative, with xi replaced by Xi , is

`′′(θ) = −e−θ +
n∑

i=1

Xi

so its Fisher information is

In(θ) = E

[
e−θ −

n∑
i=1

Xi

]

= e−θ −
n∑

i=1

E[Xi ] (Why?)

= e−θ −
n∑

i=1

θ

= e−θ − nθ
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Statistical Inference Common Estimators

Variance and Standard Error of the MLE

Theorem (Estimation for the Standard Error)

Given θMLE ,

In(θ) Var(θMLE )
P→ 1

Therefore

se(θMLE ) ≈ 1√
In(θ)
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Statistical Inference Common Estimators

Variance and Standard Error of the MLE

Example

For the earlier example, with In(θ) = n
(θ+1)2 , estimate se(θMLE )

se(θMLE ) ≈ θ + 1√
n
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Statistical Inference Common Estimators

Approximate CI’s: A remark

We can just replace se(θ̂) with
1√
In(θ)

if θ̂ is the MLE .
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Statistical Inference Common Estimators

Asymptotic Optimality: A remark

What it means in English:

If the MLE is asymptotically normal, then the variance of θMLE is less than
the variance of any other estimator for θ
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Statistical Inference Distributions arising from N (0, 1)

Chi-Squared distribution

Definition (Chi-Squared distribution)

A random variable X follows a χ2
ν distribution if for x ≥ 0,

fX (x) =
e−

x
2 x

ν
2
−1

2
ν
2 Γ
(
ν
2

)
Lemma (Chi-Squared as a ’special’ distribution)

X ∼ χ2
ν ⇐⇒ X ∼ Gamma

(ν
2
, 2
)

Significance of ν: It is the number of degrees of freedom you have.
(MATH2831/2931)
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Statistical Inference Distributions arising from N (0, 1)

Chi-Squared distribution

Theorem (Origin of Chi-Squared)

If Z ∼ N (0, 1), then Z 2 ∼ χ2
1.

Lemma (Sum of Chi-Squared is Chi-Squared)

Let X1 ∼ χ2
ν1

, ..., Xn ∼ χ2
νn be i.i.d. Then their sum satisfies:

n∑
i=1

Xi = X1 + · · ·+ Xn ∼ χ2
ν1+···+νn
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Statistical Inference Distributions arising from N (0, 1)

Revision: Probability

Example (Course pack)

If we have independent standard normal random variables Zi , find the
probability that

∑6
i=1 Z

2
i > 16.81.

Z 2
i ∼ χ2

1 for all i , so

n∑
i=1

Z 2
i ∼ χ2

6 .

P

(
6∑

i=1

Z 2
i > 16.81

)
= pchisq(16.81,df=6,lower.tail=FALSE) ≈ 0.01
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Statistical Inference Distributions arising from N (0, 1)

Student’s t distribution

Definition (t-distribution)

A random variable T follows a tν distribution if for t ∈ R,

fT (t) =
Γ
(
ν+1

2

)
√
πνΓ

(
ν
2

) (1 +
t2

ν

)− ν+1
2

Significance of ν: It is the number of degrees of freedom you have.
(MATH2831/2931)
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Statistical Inference Distributions arising from N (0, 1)

Student’s t distribution

Theorem (Origin of t)

If Z ∼ N (0, 1) and Q ∼ χ2
ν , where Z and Q are independent, then

Z√
Q/ν
∼ tν

Theorem (Convergence of t)

As ν →∞, tν → N (0, 1)

Example (Density of tν is an even function)

Just like the density of normal distributions, fT (−t) = fT (t).
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Statistical Inference Distributions arising from N (0, 1)

Sample Variance

Definition (Sample Variance)

For a random sample X1, . . . ,Xn, the sample variance is

S2 =
1

n − 1

n∑
i=1

(
Xi − X

)2

where X is the sample mean.

2901: You know this as S2
X .

Key property

S2 is an unbiased estimator for σ2.
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Statistical Inference Distributions arising from N (0, 1)

...don’t try using n instead of n − 1...

...you will live a life of regret.
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Statistical Inference Distributions arising from N (0, 1)

Sample Variance and Distributions

Theorem (Distribution of Sample Variance) (2801 formula sheet)

Suppose that X1, . . . ,Xn are i.i.d. random samples from the N (µ, σ2)
distribution. Then,

(n − 1)S2

σ2
∼ χ2

n−1.

Theorem (S2 to replace σ2)

Suppose that X1, . . . ,Xn are i.i.d. random samples from the N (µ, σ2)
distribution. Then,

X − µ
S/
√
n
∼ tn−1.

These are exact! Not approximations!
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Statistical Inference Distributions arising from N (0, 1)

Trap

Only ever use these if you know your original sample came from a normal
distribution (or something that resembles it really well)!
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Statistical Inference Distributions arising from N (0, 1)

Notation

Recall that zα represents the α-th quantile of Z ∼ N (0, 1).

Notation (t-value)

tn−1,α represents the α-th quantile of T ∼ tn−1, i.e. it satisfies

P(T < tn−1,α) = α
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Statistical Inference Distributions arising from N (0, 1)

Normal Samples: Exact CI

Corollary (Exact CI for normal samples)

Suppose X1, . . . ,Xn are from a N (µ, σ2) sample. If we know what σ2 is, a
100(1− α) % confidence interval for µ is(

X − z1−α
2

σ√
n
,X + z1−α

2

σ√
n

)
If we don’t know what σ2 is, then using the estimator S2,(

X − tn−1,1−α
2

S√
n
,X + tn−1,1−α

2

S√
n

)
Again, you can derive this on the spot.
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Statistical Inference Distributions arising from N (0, 1)

Confidence Intervals

Example

The following data is taken from a normal random sample:

1.1633974 0.2623631 -2.0633406

By considering X , find a 95% confidence interval for its mean µ.

The sample mean is X = −0.2125267, and the sample variance is

S2 =
1

3− 1

(
(1.1633974 + 0.2125267)2

+ (0.2523621 + 0.2125267)2

+ (−2.0633406 + 0.2125267)2

)
= 2.7721
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Statistical Inference Distributions arising from N (0, 1)

Confidence Intervals

Example

The following data is taken from a normal random sample:

1.1633974 0.2623631 -2.0633406

By considering X , find a 95% confidence interval for its mean µ.

For the mean, t2,0.975 = qt(0.975,df=2) = 4.302653.

Therefore a 95% confidence interval is(
−0.2125267− 4.302653

√
2.7721√

3
,−0.2125267 + 4.302653

√
2.7721√

3

)

i.e. (-4.34, 3.92)
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Statistical Inference Hypothesis tests

The hypotheses

Definition (Null Hypothesis, Alternate Hypothesis)

In the null hypothesis H0, we claim that our parameter θ takes a particular
value, say θ0.

In the alternate hypothesis H1, we claim some kind of different
dependencies.

The 2801/2901 alternate hypotheses:

H1 : θ 6= θ0

H1 : θ > θ0

H1 : θ < θ0
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Statistical Inference Hypothesis tests

p-values

Definition (p-value)

The p value tells you how much evidence there is against the null
hypothesis.

The smaller the p-value, the more evidence against the null hypothesis there
is.

If there’s more evidence against the null hypothesis, we reject it.
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Statistical Inference Hypothesis tests

Set-up of a Hypothesis Test (mostly 2801)

1 State the null and alternate hypotheses

2 State the test statistic, and its distribution if we assume H0 is true

3 Find the observed value of the test statistic

4 Compute the corresponding p-value

5 Draw a conclusion
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Statistical Inference Hypothesis tests

Test Statistics in Exact tests (Normal samples)

Suppose we know what the variance σ2 is. We test H0 : µ = µθ.

The null distribution is Z ∼ N (0, 1) .

H1 : Test statistic p-value p-value

θ 6= θ0
X − µ0

σ/
√
n

P (|Z | > |observed value|) 2P (Z > |obs. value|)

θ > θ0 As above P (Z > observed value)

θ < θ0 As above P (Z < observed value)
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Statistical Inference Hypothesis tests

Test Statistics in Exact tests (Normal samples)

Suppose we estimate the variance σ2 via S2. We test H0 : µ = µ0.

The null distribution is T ∼ tn−1 .

H1 : Test statistic p-value p-value

θ 6= θ0
X − µ0

S/
√
n

P (|T | > |observed value|) 2P (T > obs. value)

θ > θ0 As above P (T > observed value)

θ < θ0 As above P (T < observed value)
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Statistical Inference Hypothesis tests

Exact Tests (Example)

Example (2901 Course Pack)

A popular brand of yoghurt claims to contain 120 calories per serving. A
consumer watchdog group randomly sampled 14 servings of the yoghurt and
obtained the following numbers of calories per serving:

160 200 220 230 120 180 140 130 170 190 80 120 100 170

Use this data to test the claim.

Step 1: State the hypotheses.

H0 : µ = 120 v.s. H1 : µ 6= 120
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Statistical Inference Hypothesis tests

Exact Tests (Example)

Example (2901 Course Pack)

160 200 220 230 120 180 140 130 170 190 80 120 100 170

Use this data to test the claim.

Step 2: State the test statistic, and its null distribution.

We will consider

T =
X − µ
S/
√

14

and under H0,

T =
X − 120

S/
√

14
∼ t13
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Statistical Inference Hypothesis tests

Exact Tests (Example)

Example (2901 Course Pack)

160 200 220 230 120 180 140 130 170 190 80 120 100 170

Use this data to test the claim.

Step 3: Find the observed value of the statistic:

x = 157.8571

s = 44.75206

so the observed value is

x − 120

s/
√

14
=

157.8571− 120

44.75206/
√

14
= 3.165183
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Statistical Inference Hypothesis tests

Exact Tests (Example)

Example (2901 Course Pack)

160 200 220 230 120 180 140 130 170 190 80 120 100 170

Use this data to test the claim.

Steps 4/5: Compute the p-value and arrive at a conclusion.

p-value = P
(∣∣∣∣X − 120

S/
√

14

∣∣∣∣ > 3.165183

)
= 2P(T > 3.165183)

= 2 * pt(3.165183, df=13, lower.tail=FALSE)

= 0.00745

Strong evidence against H0. The company lied to us...
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Statistical Inference Hypothesis tests

Rejection Region

Definition (α-level)

The α-level, sets a standard upon which we reject H0.

Definition (Rejection region)

Under an α-level, we reject H0 if our observed value lies in the relevant
rejection region.
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Statistical Inference Hypothesis tests

Test Statistics in Exact tests (Normal samples)

Suppose we know what the variance σ2 is. We test H0 : µ = µ0.

The null distribution is Z ∼ N (0, 1) .

H1 : Test statistic Rejection region

θ 6= θ0
X − µ0

σ/
√
n

{
|observed value| > z1−α

2

}
θ > θ0 As above

{
observed value > z1−α

2

}
θ < θ0 As above

{
observed value < z1−α

2

}
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Statistical Inference Hypothesis tests

Test Statistics in Exact tests (Normal samples)

Suppose we estimate the variance σ2 via S2. We test H0 : µ = µ0.

The null distribution is T ∼ tn−1 .

H1 : Test statistic Rejection region

θ 6= θ0
X − µ0

S/
√
n

{
|observed value| > tn−1, 1−α

2

}
θ > θ0 As above

{
observed value > tn−1, 1−α

2

}
θ < θ0 As above

{
observed value < tn−1, 1−α

2

}
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Statistical Inference Hypothesis tests

Set-up of a Hypothesis Test (mostly 2901)

1 State the null and alternate hypotheses

2 State the test statistic with its distribution if we assume H0 is true,
and the α-value

3 Determine the relevant rejection region

4 Find the observed value of the test statistic

5 Draw a conclusion

Rui Tong (UNSW Society of Statistics) MATH2801/2901 Final Revision 30 May 2018 68 / 75



Statistical Inference Hypothesis tests

Earlier Example

We wish to test H0 : µ = 120 v.s H1 : µ 6= 120. Our null distribution was

T =
X − 120

S/
√

14
.

Set the α level to 5%. Our rejection region is

R =

{∣∣∣∣ x − µs/
√

14

∣∣∣∣ > t13,0.975

}
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Statistical Inference Hypothesis tests

Earlier Example

t13,0.975 = qt(0.975, df=13) = 2.160369 so

R = {|observed value| > 2.160369} .

Our observed value was 3.165183, which lies in R. Therefore under a 5%
level we reject H0.
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Statistical Inference Hypothesis tests

Error

Definition (Type I Error)

Type I error is when H0 is true, but was rejected.

Definition (Type II Error)

Type II error is when H0 is false, but was accepted.

Lemma (The whole point of α)

The α-level is the significance level. The smaller α is, the more type I error
is controlled.
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Statistical Inference Hypothesis tests

Asymptotic Test

Assume that θ̂ is an asymptotically normal estimator of θ. We wish to test
H0 : θ = θ0 v.s. H1 : θ 6= θ0.

Definition (Wald Test Statistic)

The Wald test statistic is

W =
θ̂ − θ0

se(θ̂)

with null distribution N (0, 1).

The p-value is

P(|Z | > |observed value|) = 2P(Z > |observed value|)
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Statistical Inference Hypothesis tests

Quick Example

Example

Suppose in the earlier example we computed θMLE = 0.59366396 under a
sample size n = 15.. Assume that θMLE is asymptotically normal and that
we can estimate se(θMLE ) ≈ θMLE+1√

n
. Test the hypotheses

H0 : θ = 0.5 v.s. H1 : θ 6= 0.5

We use the Wald statistic W = θ̂−0.5
se(θ̂)

=
√

15(θMLE−0.5)
θMLE+1 ; null distribution

N (0, 1).

The observed value is 0.2276258.
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Quick Example

Example

Suppose in the earlier example we computed θMLE = 0.59366396 under a
sample size n = 15.. Assume that θMLE is asymptotically normal and that
we can estimate se(θMLE ) ≈ θMLE+1√

n
. Test the hypotheses

H0 : θ = 0.5 v.s. H1 : θ 6= 0.5

We use the Wald statistic W = θ̂−0.5
se(θ̂)

=
√

15(θMLE−0.5)
θMLE+1 ; null distribution
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Statistical Inference Hypothesis tests

Quick Example

Let Z ∼ N (0, 1). Our p-value is then

P(|Z | > 0.2276258) = 2P(Z > 0.2276258)

= 2*(1 - pnorm(0.2276258))

= 0.8199372

There is huge evidence in favour of H0 here, so we accept it.
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Statistical Inference Hypothesis tests

Remark (mostly 2901)

Similar analogies exist for one-sided tests.
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