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Probability Theory Descriptive Statistics

Categorical v.s. Quantitative

Categorical

Based off some ’category’.

E.g. Sunny v.s. Cloudy, Male v.s. Female

Quantitative

Based off some ’scale’; usually involves numbers.

E.g. Weight, Precipitation, Age lived
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Probability Theory Descriptive Statistics

Course Focus - Quantitative Data

Nature of quantitative data

Location - Where abouts is the data centered?

Scale - To what extent is the data spread around there?

Shape - Symmetric v.s. Skewed

Skewness of data

Negatively skewed data is clustered towards the right.

Positively skewed data is clustered towards the left.
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Probability Theory Descriptive Statistics

Boxplots
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Probability Theory Probability theory

Probability

Definition (2901)

A probability is a function P that assigns a value in [0, 1] from events in the
sample space Ω, in the σ-algebra (say A).

Definition (Probability Space) (2901)

A probability space is the triple (Ω,A,P) with the axioms

P(A) ≥ 0 ∀A ∈ A
P(Ω) = 1

P

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P(Ai )

for mutually exclusive events A1,A2, · · · ∈ A
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Probability Theory Probability theory

Probability

Definition (Probability Space) (2901)

A probability space is the triple (Ω,A,P) with the axioms

P(A) ≥ 0 ∀A ∈ A
P(Ω) = 1

P

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P(Ai )

for mutually exclusive events A1,A2, · · · ∈ A

Don’t worry too much about them.
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Probability Theory Probability theory

Complementary Event

Definition (Complement)

Given an event A, the complement Ac is essentially the event representing
’not A’

Theorem (Probability of a complement)

For any event A ∈ A,
P(Ac) = 1− P(A)
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Probability Theory Probability theory

Conditional Probability

Definition (Conditional Probability)

Given that the event B ∈ A has occurred, the probability of A ∈ A
occuring is

P(A | B) =
P(A ∩ B)

P(B)

Theorem (Multiplication Law)

If P(B) 6= 0, then the probability of A and B occurring is

P(A ∩ B) = P(A | B)P(B)

and similarly if P(A) 6= 0,

P(A ∩ B) = P(B | A)P(A)
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Probability Theory Probability theory

Conditional Probability

Theorem (Multiplication Law)

If P(B) 6= 0, then the probability of A and B occurring is

P(A ∩ B) = P(A | B)P(B)

Example (MATH1251)

A diagnostic test has 99% chance of correctly detecting if someone has a
disease. If only 2% of the population have this disease, what is the
probability that someone has the disease and was successfully tested for it?

P(D ∩ T ) = P(T | D)P(D) = 0.99× 0.02
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Probability Theory Probability theory

Independence

Definition (Independence)

Two events A,B ∈ A are independent if

P(A ∩ B) = P(A)P(B)

Remark

If P(B) 6= 0, then two events are independent iff

P(A | B) = P(A)
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Probability Theory Probability theory

Total Probability

Theorem (Law of Total Probability)

Let the events A1,A2, . . . be mutually exclusive. Then

P(B) = P(B | A1)P(A1) + P(B | A2)P(A2) + . . .

=
∑
i

P(B | Ai )P(Ai ).

We can have a finite or infinite number of events Ai .
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Probability Theory Probability theory

Bayes’ Law

Theorem (Bayes’ Law)

Let the events A1,A2, . . . be mutually exclusive. Then

P(A | B) =
P(A ∩ B)

P(B)

=
P(B | A)P(A)

P(B)

Often used in conjunction with the law of total probability to obtain

P(A | B) =
P(B | A)P(A)∑
i P(B | Ai )P(Ai )
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Probability Theory Probability theory

Bayes’ Law

Theorem (Bayes’ Law)

Let the events A1,A2, . . . be mutually exclusive. Then

P(A | B) =
P(B | A)P(A)

P(B)

Example (MATH1251) (contd.)

99% of the people with the disease receive a positive test. 98% of those
without receive a negative test. If 2% of the population have the disease,
determine the probability of someone having the disease given they received
a positive test.
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Probability Theory Probability theory

Bayes’ Law

Example (MATH1251) (contd.)

99% of the people with the disease receive a positive test. 98% of those
without receive a negative test. If 2% of the population have the disease,
determine the probability of someone having the disease given they received
a positive test.

We require P(D | T ) =
P(T | D)P(D)

P(T )
.

P(T ) = P(T | D)P(D) + P(T | Dc)P(Dc)

= P(T | D)P(D) +
(
1− P(T c | Dc)

)
P(Dc)

= 0.99× 0.02 + (1− 0.98)× 0.98 = 0.0394

∴ P(D | T ) =
0.99× 0.02

0.0394
≈ 0.5025
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Probability Theory Probability theory

Bayes’ Law

A lot of people get stuck with Bayes’ law, especially when used with other
results. Use a tree diagram!
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Probability Theory Random Variables

Discrete Random Variables

Essentially, a r.v. X assigns a value to an event.

Definition (Discrete Random Variable)

X is a discrete random variable if it can only take countably many values.

The probability function is denoted

P(X = x)

In 2801, this is also denoted fX (x) for the discrete case.
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Probability Theory Random Variables

Validity of the discrete random variable

Properties of the discrete random variable

A discrete random variable must satisfy

P(X = x) ≥ 0 for all x∑
all x P(X = x) = 1

Example

A discrete random satisfies P(X = 1) = 1
3 and P(X 6= −1,X 6= 1) = 0.

What must P(X = −1) equal to?

From the second property, P(X = −1) = 1− 1
3 = 2

3 .
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Probability Theory Random Variables

Validity of the discrete random variable
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Probability Theory Random Variables

Continuous Random Variables

Definition (Continuous Random Variable)

X is a continuous random variable if it takes uncountably many values.

The density function is denoted

fX (x)
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Probability Theory Random Variables

Validity of the continuous random variable

Properties of the continuous random variable

A continuous random variable must satisfy

fX (x) ≥ 0 for all x∫∞
−∞ fX (x) dx = 1

Example

Can fX (x) = 2e−x for x ≥ 0 be a continuous random variable?

No, because
∫∞
−∞ fX (x) =

∫∞
0 2e−x dx = 2.
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Probability Theory Random Variables

Remark

If X is a continuous random variable, then P(X = x) = 0 for any x . We
must consider the probability that it lies in some interval.

If X is a continuous random variable, it’s always defined on some interval
(can be R). As a convention, wherever it’s not defined we just assume that
the density is 0.
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Probability Theory Random Variables

Cumulative Distribution Function

Definition (Cumulative Distribution Function)

The CDF FX (x) is the function given by FX (x) = P(X ≤ x)

Properties of the CDF (2901)

The CDF must satisfy the following properties

limx→−∞ FX (x) = 0 and limx→+∞ FX (x) = 1

FX (x) is non-decreasing

Right-continuous

Important property of the CDF

Assuming a < b,

P(a < X ≤ b) = FX (b)− FX (a)
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Probability Theory Random Variables

Where people lose marks

The CDF isn’t just defined over some small interval. It’s defined over all of
R.
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Probability Theory Random Variables

Finding a Cumulative Distribution Function

Discrete case

Add up all the probabilities you require.

Continuous case

FX (x) =

∫ x

−∞
fX (t) dt

Lemma (Continuous case):

P(a < X ≤ b) =

∫ b

a
fX (t) dt
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Probability Theory Random Variables

Finding a Cumulative Distribution Function

Example

Derive the CDF of X if X ∼ Unif(0, 1). That is to say,

fX (x) =

{
1 x ∈ (0, 1)

0 otherwise

FX (x) =

∫ x

0
1 dt = x .

Trap! We need to consider the cases for every real number x!
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Probability Theory Random Variables

Finding a Cumulative Distribution Function

Example

Derive the CDF of X if X ∼ Unif(0, 1). That is to say,

fX (x) =

{
1 x ∈ (0, 1)

0 otherwise

For x ≤ 0, we have

FX (x) =

∫ x

−∞
0 dt = 0

For 0 < x < 1, we have

FX (x) =

∫ x

−∞
fX (t) dt

=

∫ 0

−∞
0 dt +

∫ x

0
1 dt

= x
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Probability Theory Random Variables

Finding a Cumulative Distribution Function
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Probability Theory Random Variables

Finding a Cumulative Distribution Function

Example

Derive the CDF of X if X ∼ Unif(0, 1). That is to say,

fX (x) =

{
1 x ∈ (0, 1)

0 otherwise

For x ≥ 1, we have

FX (x) =

∫ x

−∞
fX (t) dt

=

∫ 0

−∞
0 dt +

∫ 1

0
1 dt +

∫ x

1
0 dt

= 1
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Probability Theory Random Variables

Finding a Cumulative Distribution Function

Example

Derive the CDF of X if X ∼ Unif(0, 1). That is to say,

fX (x) =

{
1 x ∈ (0, 1)

0 otherwise

Therefore:

FX (x) =


0 if x ≤ 0

x if 0 < x < 1

1 if x ≥ 1

E.g. FX (12) = P(X ≤ 1
2) = 1

2
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Probability Theory Random Variables

Remark

That was not necessarily the most efficient way of doing the problem.

We could’ve recycled some earlier computations along the way.
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Probability Theory Random Variables

CDF of a continuous random variable

Lemma

d

dx
FX (x) = fX (x)
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Probability Theory Random Variables

Quantiles

Definition (Quantiles)

The k-th quantile of X is the solution to the equation

FX (x) = k.

Example: The median is just the value of x such that FX (x) = 1
2 .

Useful remark (2901)

The function QX is just the inverse function of FX .

Example

Find the lower quartile (25% quantile) of the Exp
(
1
2

)
distribution.
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Probability Theory Random Variables

Quantiles

Example

Find the lower quartile (25% quantile) of the Exp
(
1
2

)
distribution.

The density function is fX (x) = 1
2e
−x/2 for x ≥ 0. We’re only interested in

the CDF for x ≥ 0.

FX (x) =

∫ x

0

1

2
e−t/2 dt = 1− e−x/2

(for x ≥ 0).
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Probability Theory Random Variables

Quantiles

Example

Find the lower quartile (25% quantile) of the Exp
(
1
2

)
distribution.

Setting FX (x) = 1
4 gives

1

4
= 1− e−x/2

e−x/2 =
3

4
x

2
= − ln

3

4

x = 2 ln
4

3
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Probability Theory Random Variables

Expectation

Definition (Expected Value)

For a discrete random variable X , its expectation is

E[X ] =
∑
all x

x P(X = x).

For a continuous random variable X , its expectation is

E[X ] =

∫ ∞
−∞

x fX (x) dx .

Rui Tong (UNSW Society of Statistics) MATH2801/2901 Final Revision 29 May 2018 23 / 100



Probability Theory Random Variables

Expectation

Definition (Expected Value after Transform)

For a discrete random variable X .

E[g(X )] =
∑
all x

g(x)P(X = x).

For a continuous random variable X ,

E[g(X )] =

∫ ∞
−∞

g(x) fX (x) dx .
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Probability Theory Random Variables

Properties of the Expectation

Theorem (Properties of taking expectation)

E[aX ] = aE[X ]

E[X + Y ] = E[X ] + E[Y ]

E[aX + bY ] = aE[X ] + bE[Y ]

E[1] = 1

Critical misassumption

In general, for any function f ,

E[f (X )] 6= f (E[X ])
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Probability Theory Random Variables

Variance and Standard Deviation

Let E[X ] = µ

Definition (Variance)

Var(X ) = E
[(
X − µ

)2]

Theorem (Variance Formula)

Var(X ) = E
[
X 2
]
− µ2

Definition (Standard Deviation)

SD(X ) = σX =
√

Var(X )
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Probability Theory Random Variables

Variance and Standard Deviation

Example (Trivial for 2901)

Prove the variance formula from the definition

E
[
(X − µ)2

]
= E

[
X 2 − 2µX + µ2

]
= E[X 2]− 2µE[X ] + µ2E[1]

= E[X 2]− 2µµ+ µ2

= E[X 2]− µ2
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Probability Theory Random Variables

Properties of the Variance

Theorem (Properties of taking variances)

Var(X + b) = Var(X )

Var(aX ) = a2 Var(X )

Var(aX + b) = a2 Var(X )

Var(1) = 0

Critical misassumption

In general, for any two random variables X and Y ,

Var(X + Y ) 6= Var(X ) + Var(Y )
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Probability Theory Random Variables

Expectation Computations

Example

Given the distribution of X below, compute its expectation and standard
deviation.

x 0 3 9 27

P(X = x) 0.3 0.1 0.5 0.1

E[X ] = 7.5

Rui Tong (UNSW Society of Statistics) MATH2801/2901 Final Revision 29 May 2018 27 / 100



Probability Theory Random Variables

Expectation Computations

Example

Given the distribution of X below, compute its expectation and standard
deviation.

x 0 3 9 27

P(X = x) 0.3 0.1 0.5 0.1

E[X ] =
∑
all x

x P(X = x)

= 0× 0.3 + 3× 0.1 + 9× 0.5 + 27× 0.1

= 7.5
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Probability Theory Random Variables

Expectation Computations

Example

Given the distribution of X below, compute its expectation and standard
deviation.

x 0 3 9 27

P(X = x) 0.3 0.1 0.5 0.1

E[X ] = 7.5

E[X 2] = 02 × 0.3 + 32 × 0.1 + 92 × 0.5 + 272 × 0.1

= 114.3
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Probability Theory Random Variables

Expectation Computations

Example

Given the distribution of X below, compute its expectation and standard
deviation.

x 0 3 9 27

P(X = x) 0.3 0.1 0.5 0.1

E[X ] = 7.5

E[X 2] = 114.3

σX =

√
E[X 2]− (E[X ])2 =

√
114.3− 7.52 =

√
58.05 ≈ 7.619
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Probability Theory Random Variables

Expectation Computations

Example (2901 oriented)

Let X ∼ Geom(p). Prove that E[X ] = 1
p .

E[X ] =
∞∑
x=1

xp(1− p)x−1
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Probability Theory Random Variables

Expectation Computations

Example (2901 oriented)

Let X ∼ Geom(p). Prove that E[X ] = 1
p .

Recall: P(X = x) = p(1− p)x−1 for x = 1, 2, . . .

E[X ] =
∑
all x

x P(X = x) =
∞∑
x=1

xp(1− p)x−1
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Probability Theory Random Variables

Expectation Computations

Example (2901 oriented)

Let X ∼ Geom(p). Prove that E[X ] = 1
p .

E[X ] =
∞∑
x=1

xp(1− p)x−1

=
∞∑
y=0

(y + 1)p(1− p)y (y = x − 1)

= (1− p)

 ∞∑
y=0

(y + 1)p(1− p)y−1



= (1− p)
∞∑
y=0

yp(1− p)y−1 + (1− p)
∞∑
y=0

p(1− p)y−1

= (1− p)
∞∑
y=1

yp(1− p)y−1 + (1− p)
∞∑
y=1

p(1− p)y−1

+ p(1− p)−1 (evaluating at y = 0)

= (1− p)E[X ] + (1− p)

(
1 + p(1− p)−1

)
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Probability Theory Random Variables

Expectation Computations

E[X ] =
∞∑
x=1
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Probability Theory Random Variables

Expectation Computations

E[X ] =
∞∑
x=1

xp(1− p)x−1

= (1− p)
∞∑
y=0

yp(1− p)y−1 + (1− p)
∞∑
y=0

p(1− p)y−1

= (1− p)
∞∑
y=1
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∞∑
y=1

p(1− p)y−1

+ p(1− p)−1 (evaluating at y = 0)

= (1− p)E[X ] + (1− p)

(
1 + p(1− p)−1

)

Rui Tong (UNSW Society of Statistics) MATH2801/2901 Final Revision 29 May 2018 27 / 100



Probability Theory Random Variables

Expectation Computations

Example (2901 oriented)

Let X ∼ Geom(p). Prove that E[X ] = 1
p .

∴ pE[X ] =

(
(1− p) + p

)
E[X ] =

1

p
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Probability Theory Random Variables

Expectation Computations (2901)

In general, can be done with the aid of Taylor series or binomial theorem.
But preferably just do this:

Method (Deriving Expected Value from definition) (2901)

Keep rearranging the expression until you make the entire density, or E[X ],
appear again.

Discrete case - Use a change of summation index at some point

Continuous case - Use integration by parts (or occasionally integration
by substitution)
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Probability Theory Random Variables

Expectation Inequalities

Theorem (Chebychev’s (Second) Inequality)

Let E[X ] = µ and SD(X ) = σ. Then, regardless of the distribution of X ,

P(|X − µ| > kσ) <
1

k2
.

Note that this is an upper bound.
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Probability Theory Random Variables

Expectation Inequalities

Example - Bounding problem (MATH2801 notes)

A factory produces 500 machines a day on average. It is subject to a
variance of 100. Let X be the amount of machines produced tomorrow.
Find a lower bound for the probability that between 400 to 600 machines
are produced tomorrow.

We require some bound for P(400 ≤ X ≤ 600). Observe that:

P(400 ≤ X ≤ 600) = P(−100 ≤ X − 500 ≤ 100)

= P(|X − 500| ≤ 100)

= P(|X − µ| ≤ kσ2)

where µ = 500, σ2 = 100 and therefore σ = 10 and k = 10 .

Rui Tong (UNSW Society of Statistics) MATH2801/2901 Final Revision 29 May 2018 29 / 100



Probability Theory Random Variables

Expectation Inequalities

Example - Bounding problem (MATH2801 notes)

A factory produces 500 machines a day on average. It is subject to a
variance of 100. Let X be the amount of machines produced tomorrow.
Find a lower bound for the probability that between 400 to 600 machines
are produced tomorrow.

From Chebychev’s (second) inequality,

P(|X − µ| > 10σ) <
1

102

∴ 1− P(|X − µ| ≤ 10σ) <
1

100

P(400 ≤ X ≤ 600) >
99

100
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Probability Theory Random Variables

Expectation Inequalities

Theorem (Markov’s inequality) (2901)

P(X ≥ a) ≤ E[X ]

a

Theorem (Jensen’s inequality) (2901)

If h is a convex function (aka. concave up function), then

h(E[X ]) ≤ E[h(X )]
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Probability Theory Random Variables

Moment Generating Functions

Definition (Moments)

The r -th moment of a random variable X is E[X r ].

Definition (MGF)

The moment generating function of a random variable X is

mX (u) = E[euX ]
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Probability Theory Random Variables

Properties of the MGF

Theorem (MGF uniquely characterises distributions)

mX (u) = mY (u) ⇐⇒ FX (x) = FY (x)

Theorem (MGF of a sum of independent r.v.s)

mX+Y (u) = mX (u)mY (u)

Lemma (Computing moments)

The r -th moment, is the limit as u → 0, of the r -th derivative:

E[X r ] = lim
u→0

d r

dx
mX (u)
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Probability Theory Random Variables

Properties of the MGF

Definition (Existence of MGF) (2901)

The MGF must be finite for some interval [−h, h] containing 0.

(However it need not be defined at 0...)
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Probability Theory Random Variables

What??

Example

Let fX (x) = 2
θ2
x for 0 < x < θ. Compute the MGF and (2901) assert its

existence.
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Probability Theory Random Variables

What??

Example

Let fX (x) = 2
θ2
x for 0 < x < θ. Compute the MGF and (2901) assert its

existence.

Integrate by parts

mX (u) = E[euX ] =
2

θ2

∫ θ

0
xeux dx

=
2

θ2

(
xeux

u

∣∣∣∣θ
0

−
∫ θ

0

eux

u
dx

)

=
2θeuθ

uθ2
− 2

θ2

(
eux

u2

∣∣∣∣θ
0

)

=
2(uθeuθ − euθ + 1)

u2θ2
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Probability Theory Random Variables

What??

Example

Let fX (x) = 2
θ2
x for 0 < x < θ. Compute the MGF and (2901) assert its

existence.

mX (u) =
2(uθeuθ − euθ + 1)

u2θ2

GeoGebra simulation
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Probability Theory Random Variables

What??

Example

Let fX (x) = 2
θ2
x for 0 < x < θ. Compute the MGF and (2901) assert its

existence.

Idea: Can check that the limit as u → 0 is finite. The finiteness of the limit
implies the required result.

lim
u→0

2(uθeuθ − euθ + 1)

u2θ2
LH
= lim

u→0

2
(
θeuθ + uθ2euθ − θeuθ

)
2uθ2

= lim
u→0

euθ

= 1

Rui Tong (UNSW Society of Statistics) MATH2801/2901 Final Revision 29 May 2018 32 / 100



Probability Theory Random Variables

Using the MGF

Example

Use the MGF of X ∼ Bin(n, p) to prove that E[X ] = np.

E[X ] = lim
u→0

d

du
(1− p + peu)n

= lim
u→0

n(1− p + peu)n−1 · peu

= n(1− p + p)n−1 · p
= np
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Probability Theory Common distributions

Bernoulli distribution

Definition (Bernoulli Distribution)

A random variable X follows a Ber(p) distribution if

P(X = x) =

{
p x = 1

1− p x = 0

Significance of each parameter

p is the probability of success.

Usage

Used to model (the likelihood of) something that either does or does not
happen.
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Probability Theory Common distributions

Binomial distribution

Definition (Binomial Distribution)

A random variable X follows a Bin(n, p) distribution if

P(X = x) =

(
n

x

)
px(1− p)n−x x = 0, . . . , n

Significance of each parameter

n is the number of trials.

p is the probability of success.

Usage

Used to model how many successes in a total of n Bernoulli trials.
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Probability Theory Common distributions

Hypergeometric distribution (ignored in 2901)

Definition (Hypergeometric Distribution)

A random variable X follows a Hyp(N,m, n) distribution if

P(X = x) =

(m
x

)(N−m
n−x

)(N
n

) 0 ≤ x ≤ min(m, n)

Significance of each parameter

n is the number of times we select the items.

N is the size of the population.

m is number of items in the pop. satisfying some criteria.

Usage

Used to model how likely we choose x out of the m desirable items.
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Probability Theory Common distributions

Hypergeometric V.S. Binomial

Hypergeometric assumes no replacement changes things. Binomial is
typically for situations with ’replacement’.
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Probability Theory Common distributions

Geometric Distribution

Definition (Geometric Distribution)

A random variable X follows a Geom(p) distribution if

P(X = x) = (1− p)x−1p x = 1, 2, . . .

Significance of each parameter

p is the probability of success.

Usage

Used to model how many Bernoulli trials we need before we reach the first
success outcome.
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Probability Theory Common distributions

Poisson Distribution

Definition (Geometric Distribution)

A random variable X follows a Poisson(λ) distribution if

P(X = x) = e−λ
λx

x!
x = 0.1, 2, . . .

Significance of each parameter

λ is the average number of occurrences of an event

Usage

Used to model events that are rare. Recommended when an occurrence of
an event is independent from another occurrence.
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Probability Theory Common distributions

Example - Computing probabilities

Example

5 cards without replacement from an ordinary deck of playing cards. What
is the probability of getting exactly 2 red cards (i.e., hearts or diamonds)?

No replacement - Hypergeometric

N = 52 (number of cards)

m = 26 (number of favourable cards, i.e. red cards)

n = 5 (number of draws)

We are considering x = 2.

P(X = 2) =

(26
2

)(52−26
5−2

)(52
5

) ≈ 0.3251
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Example - Computing probabilities

Example
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Probability Theory Common distributions

Remark

If we had replacement, we would have a probability p = 26
52 = 1

2 , so we
would consider Bin

(
5, 12
)
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Probability Theory Common distributions

Example - Computing probabilities

Example

A busy switchboard receives 150 calls an hour on average. Assume that
every call is indep and can be modelled with a Poisson distribution. from
each other. Find the probability of

1 Exactly 3 calls in a given minute

2 At least 10 calls in a given 5 minute period.

Naive:
X ∼ Poisson(150).
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Probability Theory Common distributions

Example - Computing probabilities

Example

A busy switchboard receives 150 calls an hour on average. Assume that
every call is indep and can be modelled with a Poisson distribution. from
each other. Find the probability of

1 Exactly 3 calls in a given minute

2 At least 10 calls in a given 5 minute period.

In Q1, take X ∼ Poisson(150/60) = Poisson(2.5). Then,

P(X = 3) = e−2.5
2.53

3!
≈ 0.2138
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Probability Theory Common distributions

Example - Computing probabilities

Example

A busy switchboard receives 150 calls an hour on average. Assume that
every call is indep and can be modelled with a Poisson distribution. from
each other. Find the probability of

1 Exactly 3 calls in a given minute

2 At least 10 calls in a given 5 minute period.

In Q2, take Y ∼ Poisson(2.5× 5) = Poisson(12.5). Then,

P(Y ≥ 10) = 1− P(Y ≤ 9)

= 1− e−12.5
(

12.50

0!
+ · · ·+ 12.59

9!

)

= 1 - ppois(9,lambda=12.5,lower=TRUE)

≈ 0.7985689
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Probability Theory Common distributions

Exponential Distribution

Definition (Exponential Distribution)

A random variable T follows an Exp(β) distribution if

fT (t) =
1

β
e−t/β t > 0

Significance of each parameter

β = 1
λ . It is the average time taken until the next occurrence of the event

Usage

Based off the memory-less property (see next slide).
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Probability Theory Common distributions

Exponential Distribution - Lack of Memory

Theorem (Memory-less property)
A continuous distribution satisfies the memoryless property

P(T > s + t | T > s) = P(T > t)

if and only if it is an exponential distribution.

Usage

The exponential distribution is used to measure the time taken between
consecutive independent events.
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Probability Theory Common distributions

Example

Example (2901 course pack)

If, on average, 5 servers go offline during the day, what is the chance that
no servers will go offline in the next hour?

The number of servers going offline in a day is X ∼ Poisson(5).

So the time taken for the next server to go offline is T ∼ Exp(0.2),
measured in days.

P
(
T >

1

24

)
=

∫ ∞
1/24

5e−5t dt

= e−5/24
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Probability Theory Common distributions

Example

Example (2901 course pack)

If, on average, 5 servers go offline during the day, what is the chance that
no servers will go offline in the next hour?

The number of servers going offline in a day is X ∼ Poisson(5).

So the time taken for the next server to go offline is T ∼ Exp(0.2),
measured in days.
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Probability Theory Common distributions
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Probability Theory Common distributions

Uniform Distribution

Definition (Uniform Distribution)

A random variable X follows a Unif(a, b) distribution if

fX (x) =
1

b − a
a < x < b.

Significance of the parameters

a and b are the two endpoints.
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Probability Theory Common distributions

Gamma Distribution (2901)

Definition (Gamma Distribution)

A random variable X follows a Gamma(α, β) distribution if

fX (x) =
e−x/βxα−1

Γ(α)βα

Significance of the parameters

β is the same as in the exponential distribution

α - not too obvious, don’t worry about it.
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Probability Theory Common distributions

Relationships between Random Variables (2901)

Acronym - ’iid.’ stands for independent, identically distributed

Theorem (Bernoulli sums to Binomial)

If X1, . . . ,Xn is a sequence of Ber(p) random variables, then

Y :=
n∑

i=1

Xi ∼ Bin(n, p)

Theorem (Exponential sums to Gamma)

If X1, . . . ,Xn is a sequence of Exp(β) random variables, then

Y :=
n∑

i=1

Xi ∼ Gamma(α, β)

(We’ll come back to this later.)
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Probability Theory Common distributions

Normal Distribution

Definition (Normal Distribution)

A random variable X follows a N (µ, σ2) distribution if

fX (x) =
1√

2πσ2
e−

(x−µ)2

2σ2

Significance of the parameters

µ is its mean

σ2 is its variance

Definition (Standard Normal Distribution)

If Z ∼ N (0, 1), then Z follows the standard normal distribution.
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Probability Theory Transforms

Transforms

Loose definition (Transform)

The transformation of a random variable X under some function h, is just
h(X ).
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Probability Theory Transforms

Comparing Distributions - QQ Plots

Definition (Quantile-Quantile Plot)

For two data sets, the plot of their quantiles against each other is called a
Quantile-Quantile Plot.

Using QQ plots

We seek if the QQ plot between our data and that from a known distribution
is linear. If this is the case, then they are linear transforms of each other.

Sketch of execution

Given some data, we plot its quantiles against that of N (0, 1). If the graph
is linear, then the unknown data is also from a normal distribution.
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Probability Theory Transforms

Transforms on a Discrete Random Variable

Formula (Transforming a Discrete r.v.)

P
(
h(X ) = y

)
=

∑
x :h(x)=y

P(X = x)

Um, ye wat?
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Probability Theory Transforms

Transforms on a Discrete Random Variable

Example

A random variable has the following distribution:

x -1 0 1 2

P(X = x) 0.38 0.21 0.14 0.27

Determine the distribution of Y = X 3 and Z = X 2.
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Probability Theory Transforms

Transforms on a Discrete Random Variable

Example

A random variable has the following distribution:

x -1 0 1 2

P(X = x) 0.38 0.21 0.14 0.27

Determine the distribution of Y = X 3 and Z = X 2.

If X can take the values −1, 0, 1, 2,
then Y = X 3 takes the values −1, 0, 1, 8.

P(Y = −1) = P(X 3 = −1) = P(X = −1) = 0.38

Similarly, P(Y = 0) = 0.21, P(Y = 1) = 0.14, P(Y = 8) = 0.27.
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Probability Theory Transforms

Transforms on a Discrete Random Variable

Example

A random variable has the following distribution:

x -1 0 1 2

P(X = x) 0.38 0.21 0.14 0.27

Determine the distribution of Y = X 3 and Z = X 2.

On the other hand, X 2 can only take the values of 0, 1, 4.

P(Z = 0) = P(X 2 = 0) = P(X = 0) = 0.21

P(Z = 1) = P(X 2 = 1) = P(X = ±1) = 0.38 + 0.14 = 0.62

...and P(Z = 4) is still equal to 0.27.
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Probability Theory Transforms

Transforms on a Discrete Random Variable

Just to think about... (2901 oriented)

If X ∼ Poisson(λ), what must be the distribution of Y = X 2

P(Y = y) =

{
e−λ λ

√
y

(
√
y)! if y = 0, 1, 4, 9, . . .

0 otherwise
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Probability Theory Transforms

Transforms on a Continuous Random Variable

Method 1 (Continuous random variable transform theorem)

Consider the transform y = h(x). If h is monotonic wherever fX (x) is
non-zero, then the density of Y = h(X ) is

fY (y) = fX
(
h−1(y)

) ∣∣∣∣dxdy
∣∣∣∣

Example

Let X ∼ Exp(λ). What is the density of Y = X 2?
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Probability Theory Transforms

Transforms on a Continuous Random Variable

Example

Let X ∼ Exp(λ). What is the density of Y = X 2?

fX (x) = 1
λe
−x/λ for all x > 0.

h(x) = x2 is invertible for all x > 0, with h−1(y) =
√
y .

x =
√
y , so dx

dy = 1
2
√
y

∴ fY (y) = fX (
√
y)

∣∣∣∣ 1

2
√
y

∣∣∣∣

=
1

λ
e−
√
y/λ

∣∣∣∣ 1

2
√
y

∣∣∣∣
=

1

2λ
√
y
e−
√
y/λ
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Probability Theory Transforms
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Probability Theory Transforms

Transforms on a Continuous Random Variable

Method 2

Brute force via the CDF. (Used when h is not invertible over our region.)

Example

Let X ∼ Unif(−10, 10). What is the density of Y = X 2?
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Probability Theory Transforms

Transforms on a Continuous Random Variable

Example

Let X ∼ Unif(−10, 10). What is the density of Y = X 2?

fX (x) = 1
20 for x ∈ (−10, 10). But clearly h(x) = x2 is not invertible over

this interval!
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Probability Theory Transforms

Transforms on a Continuous Random Variable

Example

Let X ∼ Unif(−10, 10). What is the density of Y = X 2?

FY (y) = P(Y ≤ y) = P(X 2 ≤ y)

= P(−√y ≤ X ≤ √y)

= FX (
√
y)− FX (−√y)

Taking derivatives w.r.t y with the chain rule:

fY (y) =
1

2
√
y
fX (
√
y) +

1

2
√
y
fX (−√y)

=
1

2
√
y
× 1

20
+

1

2
√
y
× 1

20

=
1

20
√
y
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Probability Theory Transforms

Transforms on a Continuous Random Variable
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Probability Theory Transforms

Where everybody loses marks

For what values of x is the transformed random variable defined for???

Intervals that random variables are defined on

In general, once you transform a random variable, the new interval it’s
defined on may not be the same as the old one.
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Probability Theory Transforms

Finishing off the earlier problems

Example

Let X ∼ Exp(λ). What is the density of Y = X 2?

fY (y) =
1

2λ
√
y
e−
√
y/λ

Since x > 0 and y = x2, y > 0 as well.

Rui Tong (UNSW Society of Statistics) MATH2801/2901 Final Revision 29 May 2018 56 / 100



Probability Theory Transforms

Finishing off the earlier problems

Example

Let X ∼ Unif(−10, 10). What is the density of Y = X 2?

fY (y) =
1

20
√
y

Since −10 < x < 10 and y = x2, we must have 0 < y < 100.
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Probability Theory Transforms

Probabilities in the Normal Distribution

Theorem (Standardisation of a Normal r.v.)

Let X be a N (µ, σ2) random variable. Then,

Z =
X − µ
σ

∼ N (0, 1)

Definition (Phi function)

Φ(x) is the CDF of the N (0, 1) distribution. It has properties

lim
x→−∞

Φ(x) = 0 and lim
x→+∞

Φ(x) = 1

Φ(−x) = 1− Φ(x)

Φ(0) = 0.5

Monotonic increasing (just like every CDF)

Accessible on R via pnorm(x, lower.tail = TRUE)
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Probability Theory Transforms

Probabilities in the Normal Distribution

Example (2801 notes)

The distribution of young men’s heights is approximately normally
distributed with mean 174 cm and variance 40.96 cm. What is the
probability that a randomly selected young man’s height is
one-hundred-and-seventy-something cm tall?

Let X be the height of a young man. Then X ∼ N (174, 40.96). We
require:
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Probability Theory Transforms

Probabilities in the Normal Distribution

Example (2801 notes)

The distribution of young men’s heights is approximately normally
distributed with mean 174 cm and variance 40.96 cm. What is the
probability that a randomly selected young man’s height is
one-hundred-and-seventy-something cm tall?

Let X be the height of a young man. Then X ∼ N (174, 40.96). We require:

P(170 ≤ X < 180) = P
(

170− 174

6.4
≤ 1X − 174

6.4
<

180− 174

6.4

)
= P(−0.625 ≤ Z < 0.9375)

= Φ(0.9375)− Φ(−0.625)

= pnorm(0.9375) - pnorm(-0.625)

≈ 0.5597638
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Probability Theory Transforms

Probabilities in the Normal Distribution

Example (2801 notes)

The distribution of young men’s heights is approximately normally
distributed with mean 174 cm and variance 40.96 cm. What is the
probability that a randomly selected young man’s height is
one-hundred-and-seventy-something cm tall?

Remark: We could have also done this with

pnorm(180,mean=174,sd=6.4) -pnorm(170,mean=174,sd=6.4)
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Probability Theory Transforms

Normal Distribution

Corollary (Reversing the standardisation) (2901)

If Z ∼ N (0, 1), then

X = µ+ σZ ∼ N (µ, σ)
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Probability Theory Bivariate Distributions

Probability Theory - Random variables context

The notation P(X = x ,Y = y) means P
(
(X = x) ∩ (Y = y)

)
.

Lemma (common sense put to mathematical terms - 2901)

P(X > a,X > b) = P(X > max{a, b})

P(X < a,X < b) = P(X < min{a, b})

Another one (2901)

P(X + Y = a) = P(X = a− Y )

Definition (Conditional Probability)

P(X = x | Y = y) =
P(X = x ,Y = y)

P(Y = y)
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Probability Theory Bivariate Distributions

Joint Discrete Distribution

Definition (Joint Probability Function)

If X and Y are both discrete random variables, then their joint probability
function is denoted

P(X = x ,Y = y)

In 2801, this is also denoted fX ,Y (x , y)

Properties of the joint probability function

P(X = x ,Y = y) ≥ 0 for all x , y∑
all x

∑
all y = 1
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Probability Theory Bivariate Distributions

Joint Continuous Distribution

Definition (Joint Density Function)

If X and Y are both continuous random variables, then their joint density
function is denoted

fX ,Y (x , y).

Properties of the continuous random variable

fX ,Y (x , y) ≥ 0 for all x , y∫∞
−∞

∫∞
−∞ fX ,Y (x , y) dx dy = 1
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Probability Theory Bivariate Distributions

Computing Probabilities - Bivariate Discrete

Example

The joint probability distribution of X and Y is

y

0 1 2

0 1/16 1/8 1/8
x 1 1/8 1/16 0

2 3/16 1/4 1/16

Determine P(X = 0,Y = 1), P(X ≥ 1,Y < 1) and P(X − Y = 1)

P(X = 0,Y = 1) =
1

8
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Probability Theory Bivariate Distributions

Computing Probabilities - Bivariate Discrete

Example

The joint probability distribution of X and Y is

y

0 1 2

0 1/16 1/8 1/8
x 1 1/8 1/16 0

2 3/16 1/4 1/16

Determine P(X = 0,Y = 1), P(X ≥ 1,Y < 1) and P(X − Y = 1)

P(X ≥ 1,Y < 1) = P(X = 1,Y = 0) + P(X = 2,Y = 0)

=
1

8
+

3

16
=

5

16
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Probability Theory Bivariate Distributions

Computing Probabilities - Bivariate Discrete

Example

The joint probability distribution of X and Y is

y

0 1 2

0 1/16 1/8 1/8
x 1 1/8 1/16 0

2 3/16 1/4 1/16

Determine P(X = 0,Y = 1), P(X ≥ 1,Y < 1) and P(X − Y = 1)

P(X − Y = 1) = P(X = 2,Y = 1) + P(X = 1,Y = 0)

=
1

4
+

1

8
=

3

8
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Probability Theory Bivariate Distributions

Computing Probabilities - Bivariate Continuous

Joint continuous distributions

Unless you know how to use indicator functions really well (2901), sketch
the region!

Example

fX ,Y (x , y) =
1

x2y2
x ≥ 1, y ≥ 1

is the joint density of the continuous r.v.s X and Y . Find P(X < 2,Y ≥ 4)
and P(X ≤ Y 2).
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Probability Theory Bivariate Distributions

Computing Probabilities - Bivariate Continuous

Example

fX ,Y (x , y) =
1

x2y2
x ≥ 1, y ≥ 1

is the joint density of the continuous r.v.s X and Y . Find P(X < 2,Y ≥ 4)
and P(X ≤ Y 2).

P(X < 2,Y ≥ 4) =

∫ 2

1

∫ ∞
4

1

x2y2
dy dx

=

∫ 2

1

1

4x2
dx

=
1

8
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Probability Theory Bivariate Distributions

Computing Probabilities - Bivariate Continuous

Example

fX ,Y (x , y) =
1

x2y2
x ≥ 1, y ≥ 1

is the joint density of the continuous r.v.s X and Y . Find P(X < 2,Y ≥ 4)
and P(X ≤ Y 2).

P(X ≤ Y 2) =

∫ ∞
1

∫ x2

1

1

x2y2
dy dx

=

∫ ∞
1

(
1

x2
− 1

x4

)
dx

=
2

3
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Probability Theory Bivariate Distributions

Expectation

Note that E[X ,Y ] is not well defined.

Definition (Expectation)

Suppose that g is a function from R2 to R.
For discrete random variables X and Y ,

E[g(X ,Y )] =
∑
all x

∑
all y

g(x , y)P(X = x ,Y = y)

For continuous random variables X and Y ,

E[g(X ,Y )] =

∫∫
R2

g(x , y)fX ,Y (x , y) dx dy
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Probability Theory Bivariate Distributions

Expectation Computations

Example

Find E[Y 2 lnX ] for the following distribution

y

1 2

x 1 1/10 1/5
2 3/10 2/5

E[Y 2 lnX ] = 12 ln 1P(X = 1,Y = 1) + 22 ln 1P(X = 1,Y = 2)

+ 12 ln 2P(X = 2,Y = 1) + 22 ln 2P(X = 2,Y = 2)

=

(
3

10
+ 2× 2

5

)
ln 2 =

11 ln 2

10
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Probability Theory Bivariate Distributions

Expectation Computations

Example

Find E[Y 2 lnX ] for the following distribution

y

1 2

x 1 1/10 1/5
2 3/10 2/5

E[Y 2 lnX ] = 12 ln 1P(X = 1,Y = 1) + 22 ln 1P(X = 1,Y = 2)

+ 12 ln 2P(X = 2,Y = 1) + 22 ln 2P(X = 2,Y = 2)

=

(
3

10
+ 2× 2

5

)
ln 2 =

11 ln 2
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Probability Theory Bivariate Distributions

Mostly 2901-oriented interlude

Problem

Examine the existence of E[XY ] for the earlier example:

fX ,Y (x , y) =
1

x2y2
for x , y ≥ 1.
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Probability Theory Bivariate Distributions

Cumulative Distribution Function (Bivariate)

Definition (Cumulative Distribution Function)

The CDF FX ,Y (x , y) is the function given by

FX ,Y (x , y) = P(X ≤ x ,Y ≤ y)

Finding a CDF (Continuous case)

FX ,Y (x , y) =

∫ x

−∞

∫ y

−∞
fX ,Y (u, v) du dv

Example

For the earlier example, FX ,Y (x , y) = 0 if x < 1 or y < 1. Else:

FX ,Y (x , y) =

∫ x

1

∫ y

1

1

u2v2
du dv =

(
1− 1

x

)(
1− 1

y

)
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Probability Theory Bivariate Distributions

Marginal Functions

Definition (Marginal Probability Function)

For discrete r.v.s X and Y with mass function P(X = x ,Y = y),

P(X = x) =
∑

all y P(X = x ,Y = y)

P(Y = y) =
∑

all x P(X = x ,Y = y)

Definition (Marginal Density Function)

For continuous r.v.s X and Y with density function fX ,Y (x , y),

fX (x) =
∫∞
−∞ fX ,Y (x , y) dy

fY (y) =
∫∞
−∞ fX ,Y (x , y) dx
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Probability Theory Bivariate Distributions

Independence

Recall that P(A ∩ B) = P(A)P(B).

Definition (Independence of random variables)

Two random variables are independent when:

P(X = x ,Y = y) = P(X = x)P(Y = y) (discrete case)

fX ,Y (x , y) = fX (x)fY (y) (continuous case)

Example

Test if X and Y are independent, for

fX ,Y (x , y) =
1

x2y2
x , y ≥ 1.
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Probability Theory Bivariate Distributions

Independence

Example

Test if X and Y are independent, for

fX ,Y (x , y) =
1

x2y2
x , y ≥ 1.

fX (x) =

∫ ∞
1

1

x2y2
dy

=
1

x2
x ≥ 1

Similarly fY (y) =
1

y2
y ≥ 1.

Therefore since fX ,Y (x , y) = fX (x)fY (y), X and Y are independent.
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Probability Theory Bivariate Distributions

Independence (Alternate method 1)

Lemma (Independence of random variables)

Two random variables are independent if and only if

FX ,Y (x , y) = FX (x)FY (y)

i.e. you can replace the density with the CDF.
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Probability Theory Bivariate Distributions

Conditional Functions

Definition (Conditional Probability Function)

The conditional probability function of X , given Y = y , is

P(X = x | Y = y) =
P(X = x ,Y = y)

P(Y = y)

Definition (Conditional Density Function)

The conditional density function of X , given Y = y , is

fX |Y (x | y) =
fX ,Y (x , y)

fY (y)
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Probability Theory Bivariate Distributions

Conditional Functions

Example

Determine P(X = x | Y = 2), i.e. fX |Y (x | 2), for

y

1 2

x 1 1/10 1/5
2 3/10 2/5

P(Y = 2) = P(X = 1,Y = 2) + P(X = 2,Y = 2)

=
1

5
+

2

5

=
3

5
.
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Probability Theory Bivariate Distributions

Conditional Functions

Example

Determine P(X = x | Y = 2), i.e. fX |Y (x | 2), for

y

1 2

x 1 1/10 1/5
2 3/10 2/5

P(Y = 2) =
3

5

P(X = 1 | Y = 2) =
P(X = 1,Y = 2)

P(Y = 2)
=

1

3

P(X = 2 | Y = 2) =
P(X = 2,Y = 2)

P(Y = 2)
=

2

3
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Probability Theory Bivariate Distributions

Independence (Alternate method 2)

Lemma (Independence of random variables)

Two random variables are independent if and only if

fY |X (y | x) = fY (y)

or
fX |Y (x | y) = fX (x)

Investigation

For the earlier example with fX ,Y (x , y) = x−2y−2 for x ≥ 1, y ≥ 1, prove
the independence of X and Y using this lemma instead.
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Probability Theory Bivariate Distributions

Conditional Expectation and Variance

Definition (Conditional Expectation)

E[X | Y = y ] =


∑
all x

xP(X = x | Y = y) discrete case∫ ∞
−∞

x fX |Y (x | y) dx continuous case

Definition (Conditional Variance)

Var(X | Y = y) = E[X 2 | Y = y ]−
(
E[X | Y = y ]

)2
(And similarly for Y . Basically, just add the condition to the original
formula.)
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Probability Theory Bivariate Distributions

Conditional Expectation and Variance

Example

Find E[X | Y = 2] and Var(X | Y = 2) for

y

1 2

x 1 1/10 1/5
2 3/10 2/5

E[X | Y = 2] = 1 · P(X = 1 | Y = 2) + 2 · P(X = 2 | Y = 2)

= 1× 1

3
+ 2× 2

3

=
5

3
.
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Probability Theory Bivariate Distributions

Conditional Expectation and Variance

Example

Find E[X | Y = 2] and Var(X | Y = 2) for

y

1 2

x 1 1/10 1/5
2 3/10 2/5

E[X 2 | Y = 2] = 12 · P(X = 1 | Y = 2) + 22 · P(X = 2 | Y = 2)

= 12 × 1

3
+ 22 × 2

3
= 3.
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Probability Theory Bivariate Distributions

Conditional Expectation and Variance

Example

Find E[X | Y = 2] and Var(X | Y = 2) for

y

1 2

x 1 1/10 1/5
2 3/10 2/5

Var(X 2 | Y = 2) = 3−
(

5

3

)2

=
2

9
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Probability Theory Bivariate Distributions

Covariance

Let E[X ] = µX and E[Y ] = µy .

Definition (Covariance)

Cov(X ,Y ) = E
[

(X − µX )(Y − µY )

]

Theorem (Covariance Formula)

Cov(X ,Y ) = E[XY ]− µXµY

Definition (Correlation)

Corr(X ,Y ) =
Cov(X ,Y )

SD(X ) SD(Y )
=

Cov(X ,Y )√
Var(X ) Var(Y )
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Probability Theory Bivariate Distributions

Covariance results

Theorem (Further properties of taking variances)

Var(aX + bY ) = a2 Var(X ) + b2 Var(Y ) + 2ab Cov(X ,Y )

Var(X + Y ) = Var(X ) + Var(Y ) + 2 Cov(X ,Y )

Theorem (Properties of taking covariances)

Cov(aX + bY ,Z ) = a2 Cov(X ,Z ) + b2 Cov(Y ,Z )

Cov(X , aY + bZ ) = a2 Cov(X ,Y ) + b2 Cov(X ,Z )

Cov(X ,X ) = Var(X )

Theorem (Consequence of zero covariance)

Cov(X ,Y ) = 0 ⇐⇒ E[XY ] = E[X ]E[Y ]
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Probability Theory Bivariate Distributions

Working with the covariance - Definition

Example

Let fX ,Y (x , y) = xy for x ∈ [0, 1], y ∈ [0, 2]. Determine their covariance in
the old fashioned way.

Step 1: Determine the marginal densities

fX (x) =

∫ 2

0
xy dy = 2x (0 ≤ x ≤ 1)

fY (y) =

∫ 1

0
xy dx =

y

2
(0 ≤ y ≤ 2)
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Probability Theory Bivariate Distributions

Working with the covariance - Definition

Example

Let fX ,Y (x , y) = xy for x ∈ [0, 1], y ∈ [0, 2]. Determine their covariance in
the old fashioned way.

Step 2: Find the marginal expectations E[X ] and E[Y ]

E[X ] =

∫ 1

0
2x2 dx =

2

3

E[Y ] =

∫ 2

0

y2

2
dy =

4

3
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Probability Theory Bivariate Distributions

Working with the covariance - Definition

Example

Let fX ,Y (x , y) = xy for x ∈ [0, 1], y ∈ [0, 2]. Determine their covariance in
the old fashioned way.

Step 3: Find E[XY ]

E[XY ] =

∫ 1

0

∫ 2

0
xy dy dx = · · · =

8

9

Step 4: Plug in:

Cov(X ,Y ) = E[XY ]− E[X ]E[Y ] =
8

9
− 2

3
× 4

3
= 0.
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Probability Theory Bivariate Distributions

Working with the covariance - Definition

Example

Let fX ,Y (x , y) = xy for x ∈ [0, 1], y ∈ [0, 2].Determine their covariance in
the old fashioned way.

That was a horrible idea.

Can prove that X and Y are independent

Can use the Fubini-Tonelli theorem to just check that E[XY ] equals
E[X ]E[Y ]
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Probability Theory Bivariate Distributions

Working with the covariance - Formulae

Example (2901)

Let Z ∼ N (0, 1) and W satisfy P(X = 1) = P(X = −1) = 1
2 . Suppose

that W and Z are independent and define X := WZ .

Show that Cov(X ,Z ) = 0.

Noting that E[Z ] = 0,

Cov(X ,Z ) = E[XZ ]− E[X ]E[Z ] = E[XZ ]

Subbing in X = WZ and using independence gives

Cov(X ,Z ) = E[WZ 2] = E[W ]E[Z 2]
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Show that Cov(X ,Z ) = 0.
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Probability Theory Bivariate Distributions

Working with the covariance - Formulae

Example (2901)

Let Z ∼ N (0, 1) and W satisfy P(X = 1) = P(X = −1) = 1
2 . Suppose

that W and Z are independent and define X := WZ .

Show that Cov(X ,Z ) = 0.

Observe that

E[W ] = 1P(X = 1)− 1P(X = −1) = 0.

Hence Cov(X ,Z ) = E[W ]E[Z 2] = 0.
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Probability Theory Bivariate Distributions

Uncorrelatedness 6=⇒ Independence

In general, the implication is one-sided.

Exception: X and Y are bivariate normal.
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Probability Theory Bivariate Distributions

Having a hard time with formulas?

1 Know all the formulae for the single variable case

2 Know that P(A|B) = P(A∩B)
P(B)

3 All of the bivariate formulae stem from these
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Probability Theory Bivariate Distributions

The Bivariate Transform (2901)

Theorem (Bivariate Transform Formula)

Suppose X and Y have joint density function fX ,Y and let U and V be
transforms on these random variables. Then the joint density of U,V is

fU,V (u, v) = fX ,Y (x , y) | det(J)|

where J is the Jacobian matrix

J =

(∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
Remember: x above y and u left of v

Example (Course pack)

Let X and Y be i.i.d. Exp(4) r.v.s. Find the joint density of U and V if

U = 1
2(X − Y ) and V = Y .

We know that y > 0. Since v = y , it immediately follows that v > 0.
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Probability Theory Bivariate Distributions

The Bivariate Transform (2901)

Example (Course pack)

Let X and Y be i.i.d. Exp(4) r.v.s. Find the joint density of U and V if

U =
1

2
(X − Y ) and V = Y .

We have y = v and

u =
1

2
(x − v) =⇒ x = 2u + v .

∴ J =

(
2 1
0 1

)
and det(J) = 2.

We know that y > 0. Since v = y , it immediately follows that v > 0.
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Probability Theory Bivariate Distributions

The Bivariate Transform (2901)

Example (Course pack)

Let X and Y be i.i.d. Exp(4) r.v.s. Find the joint density of U and V if

U =
1

2
(X − Y ) and V = Y .

fX ,Y (x , y) =
1

16
e−(x+y)/4

Since y = v and x = 2u + v , we get x + y = 2u + 2v . Therefore

fU,V (u, v) =
1

8
e−(u+v)/2.

We know that y > 0. Since v = y , it immediately follows that v > 0.
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Probability Theory Bivariate Distributions

The Bivariate Transform (2901)

Example (Course pack)

Let X and Y be i.i.d. Exp(4) r.v.s. Find the joint density of U and V if

U =
1

2
(X − Y ) and V = Y .

We know that y > 0. Since v = y , it immediately follows that v > 0.
However, x > 0 and x = 2u + v . Therefore:

2u + v > 0

u > −v

2
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Probability Theory Sums of Independent Random Variables

Bivariate Transform in Sums (Continuous case) (2901)

Method:

1 Set U = X + Y and V = Y

2 Apply the bivariate transform to find fU,V
3 Compute the marginal density fU
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Probability Theory Sums of Independent Random Variables

Convolutions

For random variables X and Y , let Z = X + Y .

Lemma (Discrete Convolution)

P(Z = z) =
∑
y

P(X = z − y)P(Y = y)

Lemma (Continuous Convolution)

fZ (z) =

∫ ∞
−∞

fX (z − y)fY (y) dy
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Probability Theory Sums of Independent Random Variables

Convolutions

The hard part is (again) figuring what to sum/integrate over.
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Probability Theory Sums of Independent Random Variables

Working with convolutions

Example

Let X and Y be i.i.d. Geom(p). Use convolutions to find the probability
function of Z := X + Y .

The probability functions are P(X = x) = p(1− p)x for x = 1, 2, 3, . . .,
and P(Y = y) = p(1− p)y for y = 1, 2, 3, . . .. Therefore:

P(X = z − y) = p(1− p)z−y

for z − y = 1, 2, 3, . . .,
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Probability Theory Sums of Independent Random Variables

Working with convolutions

Example

Let X and Y be i.i.d. Geom(p). Use convolutions to find the probability
function of Z := X + Y .

The probability functions are P(X = x) = p(1− p)x for x = 1, 2, 3, . . .,
and P(Y = y) = p(1− p)y for y = 1, 2, 3, . . .. Therefore:

P(X = z − y) = p(1− p)z−y

for z − y = 1, 2, 3, . . ., i.e.

y − z = . . . ,−3,−2,−1 ⇐⇒ y = . . . , z − 3, z − 2, z − 1
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Probability Theory Sums of Independent Random Variables

Working with convolutions

Example

Let X and Y be i.i.d. Geom(p). Use convolutions to find the probability
function of Z := X + Y .

Hence P(X = z − y)P(Y = y) = p(1− p)z−yp(1− p)y = p2(1− p)z , when

y = 0, 1, 2, . . .

and y = . . . , z − 3, z − 2, z − 1.

Therefore, y = 0, 1, 2, . . . , z − 3, z − 2, z − 1.
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Probability Theory Sums of Independent Random Variables

Working with convolutions

Example

Let X and Y be i.i.d. Geom(p). Use convolutions to find the probability
function of Z := X + Y .

∴ P(Z = z) =
z−1∑
y=0

p2(1− p)z

= zp2(1− p)z (sum only depends on y !)
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Probability Theory Sums of Independent Random Variables

Working with convolutions

Example

Let X and Y be i.i.d. Geom(p). Use convolutions to find the probability
function of Z := X + Y .

∴ P(Z = z) =
z−1∑
y=0

p2(1− p)z

= zp2(1− p)z (sum only depends on y !)

Since x = 1, 2, . . . and y = 1, 2, . . ., i.e. x and y are natural numbers
greater than or equal to 1, z = x + y = 2, 3, 4, . . .
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Probability Theory Sums of Independent Random Variables

Working with convolutions

Example

Let X and Y be i.i.d. Exp(1). Prove that Z := X + Y follows a
Gamma(2, 1) distribution using a convolution.

The densities are fX (x) = e−x for x > 0, and fY (y) = e−y for y > 0.
Therefore:

fX (z − y) = e−z+y , for z − y > 0 , i.e. y < z

Hence fX (z − y)fY (y) = e−z when y < z and y > 0. i.e.

fX (z − y)fY (y) = e−z for 0 < y < z
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Probability Theory Sums of Independent Random Variables

Working with convolutions

Example

Let X and Y be i.i.d. Exp(1). Prove that Z := X + Y follows a
Gamma(2, 1) distribution using a convolution.

∴ fZ (z) =

∫ z

0
e−z dy

= e−zz

=
e−z/1z2−1

Γ(2)12

Since x > 0 and y > 0, z = x + y > 0. Thus Z has the density of a
Gamma(2,1) random variable.
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Probability Theory Sums of Independent Random Variables

Via Moment Generating Functions

Theorem (MGF of a sum)

If X and Y are independent random variables, then

mX+Y (u) = mX (u)mY (u)

Example

Let X and Y be i.i.d. Exp(1). Prove that Z := X + Y follows a
Gamma(2, 1) distribution from quoting MGFs.
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Probability Theory Sums of Independent Random Variables

Via Moment Generating Functions

Example

Let X and Y be i.i.d. Exp(1). Prove that Z := X + Y follows a
Gamma(2, 1) distribution from quoting MGFs.

mX (u) = 1
1−u and mY (u) = 1

1−u . So clearly

mZ (u) = mX (u)mY (u) =

(
1

1− u

)2

,

which is the MGF of a Gamma(2,1) distribution. Hence Z follows this
distribution as well.
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Probability Theory Sums of Independent Random Variables

Common Sums

For independent random variables:

Sum of normal is normal - add means and variances

Sum of n exponentials with the same parameter β is Gamma(n, β)

Sum of Gamma with same second component is still Gamma - just add
the first component

Sum of Poisson is Poisson - add the parameter

Sum of n Bernoullis with the same parameter p is Bin(n, p)

Sum of Binomial with the same probability parameter p is still binomial
- just add the first component
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Probability Theory Convergence

Modes of Convergence (2901)

Definition(Convergence Almost Surely)

Xn
a.s.→ X ⇐⇒ P

(
lim
n→∞

Xn = X
)

= 1

Definition (Convergence in Probability)

Xn
P→ X ⇐⇒ lim

n→∞
P(|Xn − X | > ε) = 0 ∀ε > 0

Definition (Convergence in Distribution)

Xn
d→ X ⇐⇒ lim

n→∞
FXn(x) = FX (x)
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Probability Theory Convergence

Convergence in Distribution Proof (2901)

Example

Let X1, . . . ,Xn be a sequence of i.i.d. Unif(0, 1) random variables. Define

Yn = nmin{U1, . . . ,Un}. Prove that Yn
d→ Y , where Y ∼ Exp(1).

FYn(y) = P(Yn ≤ y) = P(nmin{U1, . . . ,Un} ≤ y)

= P
(

min{U1, . . . ,Un} ≤
y

n

)

= 1− P
(

min{U1, . . . ,Un} ≥
y

n

)

= 1− P
(
U1 >

y

n
, . . . ,Un >

y

n

)
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Probability Theory Convergence

Convergence in Distribution Proof (2901)

Example

Let X1, . . . ,Xn be a sequence of i.i.d. Unif(0, 1) random variables. Define

Yn = nmin{U1, . . . ,Un}. Prove that Yn
d→ Y , where Y ∼ Exp(1).

FYn(y) = P(Yn ≤ y) = P(nmin{U1, . . . ,Un} ≤ y)

= P
(

min{U1, . . . ,Un} ≤
y

n

)
= 1− P

(
min{U1, . . . ,Un} ≥

y

n

)

= 1− P
(
U1 >

y

n
, . . . ,Un >

y

n

)

In general, if min{x1, . . . , xn} ≤ x , then not every xi ≤ x .
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Probability Theory Convergence

Convergence in Distribution Proof (2901)

Example

Let X1, . . . ,Xn be a sequence of i.i.d. Unif(0, 1) random variables. Define

Yn = nmin{U1, . . . ,Un}. Prove that Yn
d→ Y , where Y ∼ Exp(1).

FYn(y) = P(Yn ≤ y) = P(nmin{U1, . . . ,Un} ≤ y)

= P
(

min{U1, . . . ,Un} ≤
y

n

)
= 1− P

(
min{U1, . . . ,Un} ≥

y

n

)
= 1− P

(
U1 >

y

n
, . . . ,Un >

y

n

)
But it is true that if min{U1, . . . ,Un} ≥ x , then every xi ≥ x .
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Probability Theory Convergence

Convergence in Distribution Proof (2901)

Example

Let X1, . . . ,Xn be a sequence of i.i.d. Unif(0, 1) random variables. Define

Yn = nmin{U1, . . . ,Un}. Prove that Yn
d→ Y , where Y ∼ Exp(1).

FYn(y) = 1− P
(
U1 >

y

n
, . . . ,Un >

y

n

)
= 1− P

(
U1 >

y

n

)
. . .P

(
Un >

y

n

)
(independence)

= 1−
[
P
(
U1 >

y

n

)]n
(id. distributed)

= 1−

[∫ 1

y/n
1 dt

]n
= 1−

(
1− y

n

)n
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Probability Theory Convergence
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Probability Theory Convergence

Convergence in Distribution Proof (2901)

Example

Let X1, . . . ,Xn be a sequence of i.i.d. Unif(0, 1) random variables. Define

Yn = nmin{U1, . . . ,Un}. Prove that Yn
d→ Y , where Y ∼ Exp(1).

∴ lim
n→∞

FYn(y) = 1− e−y = FY (y)

Hence Yn
d→ Y .

Rui Tong (UNSW Society of Statistics) MATH2801/2901 Final Revision 29 May 2018 90 / 100



Probability Theory Convergence

Stronger forms of convergence

Lemma (’Strength’ of convergence)

Almost sure convergence =⇒ Convergence in P =⇒ Convergence in d

Takeout for 2801

When using a theorem that says
D→, you can replace it with

P→.
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Probability Theory Convergence

Law of Large Numbers

Lemma (Weak Law of Large Numbers)

For a sequence of i.i.d. r.v.s X1, . . . ,Xn, with mean µ and finite variance σ2,

Xn =
1

n

n∑
i=1

Xi
P→ µ

Lemma (Strong Law of Large Numbers)

For a sequence of i.i.d. r.v.s X1, . . . ,Xn, with mean µ and finite variance σ2,

Xn =
1

n

n∑
i=1

Xi
a.s.→ µ
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Probability Theory Convergence

Law of Large Numbers

For the interested reader: The strong law fails usually when your random
variable is badly behaved.
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Probability Theory Convergence

Slutsky’s Theorem

Theorem (Slutsky’s Theorem)

Let X1, . . . ,Xn be a sequence of random variables with Xn
d→ X .

Let Y1, . . . ,Yn be a sequence of random variables with Yn
P→ c , where c is

some constant. Then:

Xn + Yn
d→ X + c

XnYn
d→ cX

2801 note: Can replace Xn
D→ X with Xn

P→ X !
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Probability Theory Convergence

F Central Limit Theorem F

F Theorem (CLT) F

For a sequence of i.i.d. r.v.s X1, . . . ,Xn with mean µ and finite variance σ2

Xn − µ
σ/
√
n

d→ N (0, 1)

where Xn = 1
n

∑n
i=1 Xi

(In the special case that the Xi ’s are normally distributed, the LHS is
standard-normal distributed.)

Key property of the CLT

The actual distribution of X1, . . . ,Xn does not matter.
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Probability Theory Convergence

Working with the CLT

Example (Libo’s notes)

Australians have average weight about 68 kg and variance about 16 kg2.
Suppose 40 random Australians are chosen. What is the (approximate)
probability that the average weight of these Australians is over 80?

Let X1, . . . ,X40 be the weights of the Australians.
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Working with the CLT

Example (Libo’s notes)

Australians have average weight about 68 kg and variance about 16 kg2.
Suppose 40 random Australians are chosen. What is the (approximate)
probability that the average weight of these Australians is over 80?

Let X1, . . . ,X40 be the weights of the Australians. Then n = 40, µ = 68
and σ = 4, so by the CLT:

X − 68

4/
√

40

d→ Z

where Z ∼ N (0, 1).
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Probability Theory Convergence

Working with the CLT

Example (Libo’s notes)

Australians have average weight about 68 kg and variance about 16 kg2.
Suppose 40 random Australians are chosen. What is the (approximate)
probability that the average weight of these Australians is over 80?

∴ P(X40 > 80) = P
(
X40 − 68

4/
√

40
>

80− 68

4/
√

40

)
≈ P

(
Z >

80− 68

4/
√

40

)

= P(Z > 3
√

40)

= 1-pnorm(3*sqrt(40))

or pnorm(3*sqrt(40), lower.tail=FALSE)
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Probability Theory Convergence

Remark: Averages v.s. Sums

Earlier: CLT for averages.

If we consider S =
n∑

i=1

Xi , we have

S − nµ

σ
√
n

d→ N (0, 1).

We call this the CLT for sums.
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Probability Theory Convergence

Working with the CLT

Quick remark: Continuity correction for discrete random variables

Not examinable for 2801

Most likely not examinable either for 2901
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Probability Theory Convergence

Approximating a Binomial with a Normal

Lemma (Normal Approximation to Binomial)

Let X ∼ Bin(n, p), which is a sum of n independent Ber(p) r.v.s. Then

X − np√
np(1− p)

d→ N (0, 1)
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Probability Theory Convergence

Approximating a Binomial with a Normal

Example

An unfortunate soul decided to sit his exam despite having a migraine and
the flu. Fortunately, it was not a university exam, and the paper involved
only 200 multiple choice questions with 5 options. Therefore, he randomly
guesses every answer. What is the (approximate) probability he fails?

Let X be how many he gets correct. Then X ∼ Bin
(
200, 15

)
.

We may approximate X with Y ∼ N (40, 32). Then,

P(X < 100) ≈ P(Y < 100)

= P
(
Y − 40√

32
<

100− 40√
32

)
= P

(
Z <

60√
32

)
= P(Z < 10.6066)

Oh my...
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Probability Theory Convergence

Ending note for today

Whenever you find the probability/density function, always specify
what range it’s defined over!!!
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Probability Theory Convergence

Appendix: R

Some examples with Bin(n, p):

dbinom(x, size=n, prob=p) = P(X = x)

pbinom(x, size=n, prob=p, lower.tail=TRUE) = P(X ≤ x)

pbinom(x, size=n, prob=p, lower.tail=FALSE) = P(X > x)

qbinom(k, size=n, prob=p, lower.tail=TRUE) =
k-th quantile = Solution to P(X ≤ x) ≤ k

Some examples with N (µ, σ2)

pnorm(x, mean=mu, sd=sigma, lower.tail=TRUE) = P(X ≤ x)

qnorm(k, mean=mu, sd=sigma, lower.tail=TRUE) =
k-th quantile = Solution to P(X ≤ x) ≤ k

rnorm(n, mean=mu, sd=sigma) just randomly generates a bunch of
values from N (µ, σ2) for you.
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