MATH2801/2901 Final Revision Part I: Probability Theory

Rui Tong

UNSW Society of Statistics

29 May 2018

Rui Tong (UNSW Society of Statistics)

MATH2801/2901 Final Revision

29 May 2018 1 / 100

() <) <)</p>

Table of Contents

Probability Theory

- Descriptive Statistics
- Probability theory
- Random Variables
- Common distributions
- Transforms
- Bivariate Distributions
- Sums of Independent Random Variables
- Convergence

Categorical v.s. Quantitative

Categorical

Based off some 'category'.

E.g. Sunny v.s. Cloudy, Male v.s. Female

Quantitative

Based off some 'scale'; usually involves numbers.

E.g. Weight, Precipitation, Age lived

Rui Tong (UNSW Society of Statistics)

MATH2801/2901 Final Revision

29 May 2018 3 / 100

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Course Focus - Quantitative Data

Nature of quantitative data

- Location Where abouts is the data centered?
- Scale To what extent is the data spread around there?
- Shape Symmetric v.s. Skewed

Skewness of data

- Negatively skewed data is clustered towards the right.
- Positively skewed data is clustered towards the left.

- 4 同 6 4 日 6 4 日 6

Boxplots

Rui Tong (UNSW Society of Statistics)

MATH2801/2901 Final Revision

29 May 2018 5 / 100

Probability

Definition (2901)

A probability is a function \mathbb{P} that assigns a value in [0,1] from events in the sample space Ω , in the σ -algebra (say \mathcal{A}).

Definition (Probability Space) (2901)

A probability space is the triple $(\Omega, \mathcal{A}, \mathbb{P})$ with the axioms

$$\mathbb{P}(\mathcal{A}) \geq 0 \hspace{1cm} orall \mathcal{A} \in \mathcal{A} \ \mathbb{P}(\Omega) = 1 \ \mathbb{P}\left(igcup_{i=1}^\infty \mathcal{A}_i
ight) = \sum_{i=1}^\infty \mathbb{P}(\mathcal{A}_i)$$

for mutually exclusive events $\textit{A}_{1},\textit{A}_{2},\dots\in\mathcal{A}$

Probability

Definition (Probability Space) (2901)

A probability space is the triple $(\Omega, \mathcal{A}, \mathbb{P})$ with the axioms

$$\mathbb{P}(A) \geq 0 \quad orall A \in \mathcal{A} \ \mathbb{P}(\Omega) = 1 \ \mathbb{P}\left(igcup_{i=1}^{\infty} A_i
ight) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$$

for mutually exclusive events $\textit{A}_1,\textit{A}_2,\dots\in\mathcal{A}$

Don't worry too much about them.

- 本間 と 本語 と 本語 と

Probability theory

Complementary Event

Definition (Complement)

Given an event A, the complement A^c is essentially the event representing 'not A'

Theorem (Probability of a complement)

For any event $A \in \mathcal{A}$,

$$\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$$

Rui Tong (UNSW Society of Statistics)

• • = • • = •

Conditional Probability

Definition (Conditional Probability)

Given that the event $B \in \mathcal{A}$ has occurred, the probability of $A \in \mathcal{A}$ occuring is

$$\mathbb{P}(A \mid B) = rac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Theorem (Multiplication Law)

If $\mathbb{P}(B) \neq 0$, then the probability of A and B occurring is

 $\mathbb{P}(A \cap B) = \mathbb{P}(A \mid B)\mathbb{P}(B)$

and similarly if $\mathbb{P}(A) \neq 0$,

 $\mathbb{P}(A \cap B) = \mathbb{P}(B \mid A)\mathbb{P}(A)$

Rui Tong (UNSW Society of Statistics)

MATH2801/2901 Final Revision

29 May 2018 8 / 100

3

イロト イヨト イヨト イヨト

Probability theory

Conditional Probability

Theorem (Multiplication Law)

If $\mathbb{P}(B) \neq 0$, then the probability of A and B occurring is

 $\mathbb{P}(A \cap B) = \mathbb{P}(A \mid B)\mathbb{P}(B)$

Example (MATH1251)

A diagnostic test has 99% chance of correctly detecting if someone has a disease. If only 2% of the population have this disease, what is the probability that someone has the disease and was successfully tested for it?

$$\mathbb{P}(D \cap T) = \mathbb{P}(T \mid D)\mathbb{P}(D) = 0.99 \times 0.02$$

イロト 不得下 イヨト イヨト 二日

Independence

Definition (Independence)

Two events $A, B \in \mathcal{A}$ are independent if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

Remark

If $\mathbb{P}(B) \neq 0$, then two events are independent iff

$$\mathbb{P}(A \mid B) = \mathbb{P}(A)$$

Rui Tong (UNSW Society of Statistics)

イロン イヨン イヨン イヨン

Probability theory

Total Probability

Theorem (Law of Total Probability)

Let the events A_1, A_2, \ldots be mutually exclusive. Then

$$\mathbb{P}(B) = \mathbb{P}(B \mid A_1)\mathbb{P}(A_1) + \mathbb{P}(B \mid A_2)\mathbb{P}(A_2) + \dots = \sum_i \mathbb{P}(B \mid A_i)\mathbb{P}(A_i).$$

イロト イヨト イヨト

3

10 / 100

29 May 2018

We can have a finite or infinite number of events A_i .

Theorem (Bayes' Law)

Let the events A_1, A_2, \ldots be mutually exclusive. Then

$$\mathbb{P}(A \mid B) = rac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \ = rac{\mathbb{P}(B \mid A)\mathbb{P}(A)}{\mathbb{P}(B)}$$

Often used in conjunction with the law of total probability to obtain

$$\mathbb{P}(A \mid B) = rac{\mathbb{P}(B \mid A)\mathbb{P}(A)}{\sum_{i}\mathbb{P}(B \mid A_{i})\mathbb{P}(A_{i})}$$

3

イロト イポト イヨト イヨト

Theorem (Bayes' Law)

Let the events A_1, A_2, \ldots be mutually exclusive. Then

$$\mathbb{P}(A \mid B) = rac{\mathbb{P}(B \mid A)\mathbb{P}(A)}{\mathbb{P}(B)}$$

Example (MATH1251) (contd.)

99% of the people with the disease receive a positive test. 98% of those without receive a negative test. If 2% of the population have the disease, determine the probability of someone having the disease *given* they received a positive test.

Rui Tong (UNSW Society of Statistics)

29 May 2018 11 / 100

Example (MATH1251) (contd.)

99% of the people with the disease receive a positive test. 98% of those without receive a negative test. If 2% of the population have the disease, determine the probability of someone having the disease *given* they received a positive test.

We require
$$\mathbb{P}(D \mid T) = \frac{\mathbb{P}(T \mid D)\mathbb{P}(D)}{\mathbb{P}(T)}$$
.
 $\mathbb{P}(T) = \mathbb{P}(T \mid D)\mathbb{P}(D) + \mathbb{P}(T \mid D^c)\mathbb{P}(D^c)$
 $= \mathbb{P}(T \mid D)\mathbb{P}(D) + (1 - \mathbb{P}(T^c \mid D^c))\mathbb{P}(D^c)$
 $= 0.99 \times 0.02 + (1 - 0.98) \times 0.98 = 0.0394$
 $\therefore \mathbb{P}(D \mid T) = \frac{0.99 \times 0.02}{0.0394} \approx 0.5025$

MATH2801/2901 Final Revision

A lot of people get stuck with Bayes' law, especially when used with other results. Use a tree diagram!

3

(日) (周) (三) (三)

Discrete Random Variables

Essentially, a r.v. X assigns a value to an event.

Definition (Discrete Random Variable)

X is a discrete random variable if it can only take countably many values.

The probability function is denoted

$$\mathbb{P}(X=x)$$

In 2801, this is also denoted $f_X(x)$ for the discrete case.

くほと くほと くほと

Validity of the discrete random variable

Properties of the discrete random variable

A discrete random variable must satisfy

•
$$\mathbb{P}(X = x) \ge 0$$
 for all x

•
$$\sum_{\text{all } x} \mathbb{P}(X = x) = 1$$

Example

A discrete random satisfies
$$\mathbb{P}(X = 1) = \frac{1}{3}$$
 and $\mathbb{P}(X \neq -1, X \neq 1) = 0$.
What must $\mathbb{P}(X = -1)$ equal to?

Rui Tong (UNSW Society of Statistics)

■ ▶ ◀ ■ ▶ ■ つへで 29 May 2018 13 / 100

(日) (周) (三) (三)

Validity of the discrete random variable

Properties of the discrete random variable

A discrete random variable must satisfy

•
$$\mathbb{P}(X = x) \ge 0$$
 for all x

•
$$\sum_{\text{all } x} \mathbb{P}(X = x) = 1$$

Example

A discrete random satisfies $\mathbb{P}(X = 1) = \frac{1}{3}$ and $\mathbb{P}(X \neq -1, X \neq 1) = 0$. What must $\mathbb{P}(X = -1)$ equal to?

From the second property, $\mathbb{P}(X = -1) = 1 - \frac{1}{3} = \frac{2}{3}$.

Rui Tong (UNSW Society of Statistics)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Random Variables

Continuous Random Variables

Definition (Continuous Random Variable)

X is a continuous random variable if it takes uncountably many values.

The density function is denoted

$f_X(x)$

Rui Tong (UNSW Society of Statistics) MATH2801/2901 Final Revision • • = • • = •

Validity of the continuous random variable

Properties of the continuous random variable

A continuous random variable must satisfy

•
$$f_X(x) \ge 0$$
 for all x

•
$$\int_{-\infty}^{\infty} f_X(x) \, dx = 1$$

Example

Can $f_X(x) = 2e^{-x}$ for $x \ge 0$ be a continuous random variable?

No, because
$$\int_{-\infty}^{\infty} f_X(x) = \int_0^{\infty} 2e^{-x} dx = 2.$$

Rui Tong (UNSW Society of Statistics)

29 May 2018 15 / 100

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Remark

- If X is a continuous random variable, then $\mathbb{P}(X = x) = 0$ for any x. We *must* consider the probability that it lies in some interval.
- If X is a continuous random variable, it's always defined on some interval (can be \mathbb{R}). As a convention, wherever it's not defined we just assume that the density is 0.

イロト 不得下 イヨト イヨト

16 / 100

Cumulative Distribution Function

Definition (Cumulative Distribution Function)

The CDF $F_X(x)$ is the function given by $|F_X(x) = \mathbb{P}(X \le x)|$

Properties of the CDF (2901)

The CDF must satisfy the following properties

- $\lim_{x\to -\infty} F_X(x) = 0$ and $\lim_{x\to +\infty} F_X(x) = 1$
- $F_X(x)$ is non-decreasing
- Right-continuous

Important property of the CDF

Assuming a < b,

$$\mathbb{P}(a < X \leq b) = F_X(b) - F_X(a)$$

Rui Tong (UNSW Society of Statistics)

MATH2801/2901 Final Revision

29 May 2018 17 / 100

Random Variables

э

18 / 100

Where people lose marks

The CDF isn't just defined over some small interval. It's defined over all of $\mathbb{R}.$

Rui Tong (UNSW Society of Statistics) MATH2801/2901 Final Revision 29 May 2018

Discrete case

Add up all the probabilities you require.

Continuous case

$$F_X(x) = \int_{-\infty}^x f_X(t) \, dt$$

Lemma (Continuous case):

$$\mathbb{P}(a < X \le b) = \int_a^b f_X(t) \, dt$$

Rui Tong (UNSW Society of Statistics)

29 May 2018 19 / 100

3

- 本間 と 本語 と 本語 と

Example

Derive the CDF of X if $X \sim \text{Unif}(0, 1)$. That is to say,

$$f_X(x) = egin{cases} 1 & x \in (0,1) \ 0 & ext{otherwise} \end{cases}$$

$$F_X(x) = \int_0^x 1\,dt = x.$$

Trap! We need to consider the cases for *every* real number *x*!

(日) (周) (三) (三)

Example

Derive the CDF of X if $X \sim \text{Unif}(0, 1)$. That is to say,

$$f_X(x) = egin{cases} 1 & x \in (0,1) \ 0 & ext{otherwise} \end{cases}$$

For $x \leq 0$, we have

$$F_X(x) = \int_{-\infty}^x 0\,dt = 0$$

Rui Tong (UNSW Society of Statistics) MATH2801/2901 Final Revision

3

(本部)と 本語 と 本語を

Example

Derive the CDF of X if $X \sim \text{Unif}(0, 1)$. That is to say,

$$f_X(x) = egin{cases} 1 & x \in (0,1) \ 0 & ext{otherwise} \end{cases}$$

For $x \leq 0$, we have

$$F_X(x) = \int_{-\infty}^x 0 \, dt = 0$$

For 0 < x < 1, we have

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$
$$= \int_{-\infty}^0 0 dt + \int_0^x 1 dt$$

MATH2801/2901 Final Revision

= x

29 May 2018 19 / 100

æ

・ロン ・聞と ・ほと ・ほと

Example

Derive the CDF of X if $X \sim \text{Unif}(0, 1)$. That is to say,

$$f_X(x) = egin{cases} 1 & x \in (0,1) \ 0 & ext{otherwise} \end{cases}$$

For $x \ge 1$, we have

$$F_X(x) = \int_{-\infty}^{x} f_X(t) dt \\ = \int_{-\infty}^{0} 0 dt + \int_{0}^{1} 1 dt + \int_{1}^{x} 0 dt \\ = 1$$

3

- 4 同 6 4 日 6 4 日 6

Example

Derive the CDF of X if $X \sim \text{Unif}(0, 1)$. That is to say,

$$f_X(x) = egin{cases} 1 & x \in (0,1) \ 0 & ext{otherwise} \end{cases}$$

Therefore:

$$F_X(x) = \begin{cases} 0 & \text{if } x \le 0 \\ x & \text{if } 0 < x < 1 \\ 1 & \text{if } x \ge 1 \end{cases}$$

E.g. $F_X(\frac{1}{2}) = \mathbb{P}(X \leq \frac{1}{2}) = \frac{1}{2}$

29 May 2018 19 / 100

3

(日) (周) (三) (三)

Remark

That was not necessarily the most efficient way of doing the problem.

We could've recycled some earlier computations along the way.

Rui Tong (UNSW Society of Statistics) MATH2801

MATH2801/2901 Final Revision

29 May 2018 20 / 100

э

(日) (同) (三) (三)

CDF of a continuous random variable

Lemma

$$\frac{d}{dx}F_X(x)=f_X(x)$$

Rui Tong (UNSW Society of Statistics) MATH280

MATH2801/2901 Final Revision

29 May 2018 21 / 100

∃ 990

・ロン ・四 ・ ・ ヨン ・ ヨン

Quantiles

Definition (Quantiles)

The k-th quantile of X is the solution to the equation

 $F_X(x) = k.$

Example: The median is just the value of x such that $F_X(x) = \frac{1}{2}$.

Useful remark (2901)

The function Q_X is just the inverse function of F_X .

Example

Find the lower quartile (25% quantile) of the $Exp(\frac{1}{2})$ distribution.

Rui Tong (UNSW Society of Statistics)

MATH2801/2901 Final Revision

29 May 2018 22 / 100

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Quantiles

Example

Find the lower quartile (25% quantile) of the $Exp(\frac{1}{2})$ distribution.

The density function is $f_X(x) = \frac{1}{2}e^{-x/2}$ for $x \ge 0$. We're only interested in the CDF for $x \ge 0$.

$$F_X(x) = \int_0^x \frac{1}{2} e^{-t/2} dt = 1 - e^{-x/2}$$

(for $x \ge 0$).

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Quantiles

Example

Find the lower quartile (25% quantile) of the $Exp(\frac{1}{2})$ distribution.

Setting $F_X(x) = \frac{1}{4}$ gives

$$\frac{1}{4} = 1 - e^{-x/2}$$
$$e^{-x/2} = \frac{3}{4}$$
$$\frac{x}{2} = -\ln\frac{3}{4}$$
$$x = 2\ln\frac{4}{3}$$

Rui Tong (UNSW Society of Statistics)

Expectation

Definition (Expected Value)

For a discrete random variable X, its expectation is

$$\mathbb{E}[X] = \sum_{\text{all } x} x \mathbb{P}(X = x).$$

For a continuous random variable X, its expectation is

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) \, dx.$$

Rui Tong (UNSW Society of Statistics)

過 ト イヨ ト イヨト

Expectation

Definition (Expected Value after Transform)

For a discrete random variable X.

$$\mathbb{E}[g(X)] = \sum_{\text{all } x} g(x) \mathbb{P}(X = x).$$

For a continuous random variable X,

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx.$$

Rui Tong (UNSW Society of Statistics)

29 May 2018 23 / 100

3

(日) (周) (三) (三)

Properties of the Expectation

Theorem (Properties of taking expectation)

• $\mathbb{E}[aX] = a\mathbb{E}[X]$

•
$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

•
$$\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$$

•
$$\mathbb{E}[1] = 1$$

Critical misassumption

In general, for any function f,

 $\mathbb{E}[f(X)] \neq f(\mathbb{E}[X])$

Rui Tong (UNSW Society of Statistics)

MATH2801/2901 Final Revision

29 May 2018 24 / 100

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Variance and Standard Deviation

Let
$$\mathbb{E}[X] = \mu$$

Definition (Variance)

$$\mathsf{Var}(X) = \mathbb{E}\bigg[\big(X - \mu \big)^2 \bigg]$$

Theorem (Variance Formula)

$$\operatorname{Var}(X) = \mathbb{E}\left[X^2\right] - \mu^2$$

Definition (Standard Deviation)

$$SD(X) = \sigma_X = \sqrt{Var(X)}$$

Rui Tong (UNSW Society of Statistics)

■ ▶ ▲ ■ ▶ ■ つへで 29 May 2018 25 / 100

ヘロト 人間 ト 人 ヨト 人 ヨトー

Variance and Standard Deviation

Example (Trivial for 2901)

Prove the variance formula from the definition

$$\mathbb{E}\left[(X-\mu)^2\right] = \mathbb{E}\left[X^2 - 2\mu X + \mu^2\right]$$
$$= \mathbb{E}[X^2] - 2\mu \mathbb{E}[X] + \mu^2 \mathbb{E}[1]$$
$$= \mathbb{E}[X^2] - 2\mu\mu + \mu^2$$
$$= \mathbb{E}[X^2] - \mu^2$$

Rui Tong (UNSW Society of Statistics)

29 May 2018 25 / 100

3

(日) (周) (三) (三)

Properties of the Variance

Theorem (Properties of taking variances)

- Var(X + b) = Var(X)
- $Var(aX) = a^2 Var(X)$
- $Var(aX + b) = a^2 Var(X)$

Critical misassumption

In general, for any two random variables X and Y,

$$Var(X + Y) \neq Var(X) + Var(Y)$$

Rui Tong (UNSW Society of Statistics)

MATH2801/2901 Final Revision

29 May 2018 26 / 100

Example

Given the distribution of X below, compute its expectation and standard deviation.

x
 0
 3
 9
 27

$$\mathbb{P}(X=x)$$
 0.3
 0.1
 0.5
 0.1

Rui Tong (UNSW Society of Statistics) MATH2801

э

- ∢ ∃ ▶

Example

Given the distribution of X below, compute its expectation and standard deviation.

$$\mathbb{E}[X] = \sum_{\text{all } \times} x \mathbb{P}(X = x)$$
$$= 0 \times 0.3 + 3 \times 0.1 + 9 \times 0.5 + 27 \times 0.1$$
$$= 7.5$$

э

• • = • • = •

Example

Given the distribution of X below, compute its expectation and standard deviation.

$$\mathbb{E}[X] = 7.5$$

$$\mathbb{E}[X^2] = 0^2 \times 0.3 + 3^2 \times 0.1 + 9^2 \times 0.5 + 27^2 \times 0.1$$

= 114.3

э

→ Ξ →

Example

Given the distribution of X below, compute its expectation and standard deviation.

$$\mathbb{E}[X] = 7.5$$
$$\mathbb{E}[X^2] = 114.3$$

$$\sigma_X = \sqrt{\mathbb{E}[X^2] - (\mathbb{E}[X])^2} = \sqrt{114.3 - 7.5^2} = \sqrt{58.05} \approx 7.619$$

Expectation Computations

Example (2901 oriented)

Let $X \sim \text{Geom}(p)$. Prove that $\mathbb{E}[X] = \frac{1}{p}$.

Rui Tong (UNSW Society of Statistics) MATH2801/3

MATH2801/2901 Final Revision

29 May 2018 27 / 100

æ

イロト 不得下 イヨト イヨト

Example (2901 oriented)

Let $X \sim \text{Geom}(p)$. Prove that $\mathbb{E}[X] = \frac{1}{p}$.

Recall:
$$\mathbb{P}(X = x) = p(1-p)^{x-1}$$
 for $x = 1, 2, \dots$

$$\mathbb{E}[X] = \sum_{\text{all } x} x \mathbb{P}(X = x) = \sum_{x=1}^{\infty} x p (1-p)^{x-1}$$

Rui Tong (UNSW Society of Statistics)

29 May 2018 27 / 100

æ

イロト 不得下 イヨト イヨト

Example (2901 oriented)

Let $X \sim \text{Geom}(p)$. Prove that $\mathbb{E}[X] = \frac{1}{p}$.

$$\begin{split} \mathbb{E}[X] &= \sum_{x=1}^{\infty} x p (1-p)^{x-1} \\ &= \sum_{y=0}^{\infty} (y+1) p (1-p)^{y} \\ &= (1-p) \left[\sum_{y=0}^{\infty} (y+1) p (1-p)^{y-1} \right] \end{split}$$

Rui Tong (UNSW Society of Statistics)

29 May 2018 27 / 100

2

イロト イポト イヨト イヨト

$$\mathbb{E}[X] = \sum_{x=1}^{\infty} xp(1-p)^{x-1}$$

= $\sum_{y=0}^{\infty} (y+1)p(1-p)^{y}$ (y = x - 1)
= $(1-p) \left[\sum_{y=0}^{\infty} (y+1)p(1-p)^{y-1} \right]$
= $(1-p) \sum_{y=0}^{\infty} yp(1-p)^{y-1} + (1-p) \sum_{y=0}^{\infty} p(1-p)^{y-1}$

Rui Tong (UNSW Society of Statistics)

29 May 2018 27 / 100

2

イロト イポト イヨト イヨト

$$\mathbb{E}[X] = \sum_{x=1}^{\infty} xp(1-p)^{x-1}$$

= $(1-p) \sum_{y=0}^{\infty} yp(1-p)^{y-1} + (1-p) \sum_{y=0}^{\infty} p(1-p)^{y-1}$
= $(1-p) \sum_{y=1}^{\infty} yp(1-p)^{y-1} + (1-p) \sum_{y=1}^{\infty} p(1-p)^{y-1}$
+ $p(1-p)^{-1}$ (evaluating at $y = 0$)
= $(1-p)\mathbb{E}[X] + (1-p) \left(1+p(1-p)^{-1}\right)$

29 May 2018 27 / 100

2

・ロン ・四 ・ ・ ヨン ・ ヨン

Expectation Computations

Example (2901 oriented)

Let $X \sim \text{Geom}(p)$. Prove that $\mathbb{E}[X] = \frac{1}{p}$.

$$\therefore p\mathbb{E}[X] = \left((1-p) + p\right)$$
$$\mathbb{E}[X] = \frac{1}{p}$$

Rui Tong (UNSW Society of Statistics)

29 May 2018 28 / 100

2

・ロト ・聞ト ・ヨト ・ヨト

Expectation Computations (2901)

In general, can be done with the aid of Taylor series or binomial theorem. But preferably just do this:

Method (Deriving Expected Value from definition) (2901)

Keep rearranging the expression until you make the entire density, or $\mathbb{E}[X]$, appear again.

- Discrete case Use a change of summation index at some point
- Continuous case Use integration by parts (or occasionally integration by substitution)

イロト 不得下 イヨト イヨト

Expectation Inequalities

Theorem (Chebychev's (Second) Inequality)

Let $\mathbb{E}[X] = \mu$ and $SD(X) = \sigma$. Then, regardless of the distribution of X,

$$\mathbb{P}(|X-\mu| > k\sigma) < \frac{1}{k^2}.$$

Note that this is an *upper* bound.

|山田 | 小田 | 小田 |

Expectation Inequalities

Example - Bounding problem (MATH2801 notes)

A factory produces 500 machines a day on average. It is subject to a variance of 100. Let X be the amount of machines produced tomorrow. Find a *lower* bound for the probability that between 400 to 600 machines are produced tomorrow.

We require some bound for $\mathbb{P}(400 \le X \le 600)$. Observe that:

$$egin{aligned} \mathbb{P}(400 \leq X \leq 600) &= \mathbb{P}(-100 \leq X - 500 \leq 100) \ &= \mathbb{P}(|X - 500| \leq 100) \ &= \mathbb{P}(|X - \mu| \leq k\sigma^2) \end{aligned}$$

where $\mu = 500$, $\sigma^2 = 100$ and therefore $\sigma = 10$ and k = 10.

イロト 不得下 イヨト イヨト 二日

Expectation Inequalities

Example - Bounding problem (MATH2801 notes)

A factory produces 500 machines a day on average. It is subject to a variance of 100. Let X be the amount of machines produced tomorrow. Find a *lower* bound for the probability that between 400 to 600 machines are produced tomorrow.

From Chebychev's (second) inequality,

$$\mathbb{P}(|X-\mu|>10\sigma)<rac{1}{10^2}\ \therefore 1-\mathbb{P}(|X-\mu|\le10\sigma)<rac{1}{100}\ \mathbb{P}(400\le X\le600)>rac{99}{100}$$

Expectation Inequalities

Theorem (Markov's inequality) (2901)

$$\mathbb{P}(X \geq a) \leq rac{\mathbb{E}[X]}{a}$$

Theorem (Jensen's inequality) (2901)

If h is a convex function (aka. concave up function), then

 $h(\mathbb{E}[X]) \leq \mathbb{E}[h(X)]$

Rui Tong (UNSW Society of Statistics) MATH28

MATH2801/2901 Final Revision

29 May 2018 29 / 100

3

イロト イポト イヨト イヨト

Moment Generating Functions

Definition (Moments)

The *r*-th moment of a random variable X is $\mathbb{E}[X^r]$.

Definition (MGF)

The moment generating function of a random variable X is

$$m_X(u) = \mathbb{E}[e^{uX}]$$

Rui Tong (UNSW Society of Statistics)

3

イロト 不得下 イヨト イヨト

Properties of the MGF

Theorem (MGF uniquely characterises distributions)

$$m_X(u) = m_Y(u) \iff F_X(x) = F_Y(x)$$

Theorem (MGF of a sum of independent r.v.s)

$$m_{X+Y}(u) = m_X(u)m_Y(u)$$

Lemma (Computing moments)

The *r*-th moment, is the limit as $u \rightarrow 0$, of the *r*-th derivative:

$$\mathbb{E}[X^r] = \lim_{u \to 0} \frac{d^r}{dx} m_X(u)$$

Rui Tong (UNSW Society of Statistics)

29 May 2018 31 / 100

Properties of the MGF

Definition (Existence of MGF) (2901)

The MGF must be finite for some interval [-h, h] containing 0.

(However it need not be defined at 0...)

Rui Tong (UNSW Society of Statistics) MATH2801/2901 Final Revision

Example

Let $f_X(x) = \frac{2}{\theta^2}x$ for $0 < x < \theta$. Compute the MGF and (2901) assert its existence.

・ロン ・四 ・ ・ ヨン ・ ヨン

æ

Example

Let $f_X(x) = \frac{2}{\theta^2}x$ for $0 < x < \theta$. Compute the MGF and (2901) assert its existence.

Integrate by parts

$$m_X(u) = \mathbb{E}[e^{uX}] = \frac{2}{\theta^2} \int_0^\theta x e^{ux} dx$$
$$= \frac{2}{\theta^2} \left(\frac{x e^{ux}}{u} \Big|_0^\theta - \int_0^\theta \frac{e^{ux}}{u} dx \right)$$

Rui Tong (UNSW Society of Statistics)

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Example

Let $f_X(x) = \frac{2}{\theta^2}x$ for $0 < x < \theta$. Compute the MGF and (2901) assert its existence.

Slowly tidy everything up

1

$$m_{X}(u) = \mathbb{E}[e^{uX}] = \frac{2}{\theta^{2}} \int_{0}^{\theta} x e^{ux} dx$$
$$= \frac{2}{\theta^{2}} \left(\frac{x e^{ux}}{u} \Big|_{0}^{\theta} - \int_{0}^{\theta} \frac{e^{ux}}{u} dx \right)$$
$$= \frac{2\theta e^{u\theta}}{u\theta^{2}} - \frac{2}{\theta^{2}} \left(\frac{e^{ux}}{u^{2}} \Big|_{0}^{\theta} \right)$$

3

くほと くほと くほと

Example

Let $f_X(x) = \frac{2}{\theta^2}x$ for $0 < x < \theta$. Compute the MGF and (2901) assert its existence.

Slowly tidy everything up

ľ

$$m_X(u) = \mathbb{E}[e^{uX}] = \frac{2}{\theta^2} \int_0^\theta x e^{ux} dx$$
$$= \frac{2}{\theta^2} \left(\frac{x e^{ux}}{u} \Big|_0^\theta - \int_0^\theta \frac{e^{ux}}{u} dx \right)$$
$$= \frac{2\theta e^{u\theta}}{u\theta^2} - \frac{2}{\theta^2} \left(\frac{e^{ux}}{u^2} \Big|_0^\theta \right)$$
$$= \frac{2(u\theta e^{u\theta} - e^{u\theta} + 1)}{u^2\theta^2}$$

Rui Tong (UNSW Society of Statistics)

MATH2801/2901 Final Revision

通 ト イヨ ト イヨト

Example

Let $f_X(x) = \frac{2}{\theta^2}x$ for $0 < x < \theta$. Compute the MGF and (2901) assert its existence.

$$m_X(u) = \frac{2(u\theta e^{u\theta} - e^{u\theta} + 1)}{u^2\theta^2}$$

GeoGebra simulation

Rui Tong (UNSW Society of Statistics)

■ ▶ ◀ ■ ▶ ■ つへで 29 May 2018 32 / 100

ヘロト 人間 ト 人 ヨト 人 ヨトー

Example

Let $f_X(x) = \frac{2}{\theta^2}x$ for $0 < x < \theta$. Compute the MGF and (2901) assert its existence.

Idea: Can check that the limit as $u \rightarrow 0$ is finite. The finiteness of the limit implies the required result.

$$\lim_{u \to 0} \frac{2(u\theta e^{u\theta} - e^{u\theta} + 1)}{u^2 \theta^2} \stackrel{LH}{=} \lim_{u \to 0} \frac{2(\theta e^{u\theta} + u\theta^2 e^{u\theta} - \theta e^{u\theta})}{2u\theta^2}$$
$$= \lim_{u \to 0} e^{u\theta}$$
$$= 1$$

3

・ロト ・聞ト ・ ヨト ・ ヨト

Using the MGF

Example

Use the MGF of $X \sim Bin(n, p)$ to prove that $\mathbb{E}[X] = np$.

$$\mathbb{E}[X] = \lim_{u \to 0} \frac{d}{du} (1 - p + pe^u)^n$$

Rui Tong (UNSW Society of Statistics) MATH2801/2901 Final Revision 29 May 2018

(日) (周) (三) (三)

æ

33 / 100

Using the MGF

Example

Use the MGF of $X \sim Bin(n, p)$ to prove that $\mathbb{E}[X] = np$.

$$\mathbb{E}[X] = \lim_{u \to 0} \frac{d}{du} (1 - p + pe^u)^n$$
$$= \lim_{u \to 0} n(1 - p + pe^u)^{n-1} \cdot pe^u$$
$$= n(1 - p + p)^{n-1} \cdot p$$
$$= np$$

Rui Tong (UNSW Society of Statistics)

29 May 2018 33 / 100

æ

(日) (周) (三) (三)

Bernoulli distribution

Definition (Bernoulli Distribution)

A random variable X follows a Ber(p) distribution if

$$\mathbb{P}(X=x) = egin{cases} p & x=1\ 1-p & x=0 \end{bmatrix}$$

Significance of each parameter

p is the probability of success.

Usage

Used to model (the likelihood of) something that either does or does not happen.

Rui Tong (UNSW Society of Statistics)

MATH2801/2901 Final Revision

29 May 2018 34 / 100

Binomial distribution

Definition (Binomial Distribution)

A random variable X follows a Bin(n, p) distribution if

$$\mathbb{P}(X=x) = \binom{n}{x} p^{x} (1-p)^{n-x} \qquad x = 0, \dots, n$$

Significance of each parameter

- *n* is the number of trials.
- p is the probability of success.

Usage

Used to model how many successes in a total of n Bernoulli trials.

Rui Tong (UNSW Society of Statistics)

MATH2801/2901 Final Revision

29 May 2018 35 / 100

3

(日) (周) (三) (三)

Hypergeometric distribution (ignored in 2901)

Definition (Hypergeometric Distribution)

A random variable X follows a Hyp(N, m, n) distribution if

$$\mathbb{P}(X=x) = \frac{\binom{m}{x}\binom{N-m}{n-x}}{\binom{N}{n}} \qquad 0 \le x \le \min(m, n)$$

Significance of each parameter

- *n* is the number of times we select the items.
- N is the size of the population.
- *m* is number of items in the pop. satisfying some criteria.

Usage

Used to model how likely we choose x out of the m desirable items.

Rui Tong (UNSW Society of Statistics)

MATH2801/2901 Final Revision

29 May 2018 36 / 100

Image: A marked black in the second seco

37 / 100

Hypergeometric V.S. Binomial

Hypergeometric assumes no replacement changes things. Binomial is typically for situations with 'replacement'.

Geometric Distribution

Definition (Geometric Distribution)

A random variable X follows a Geom(p) distribution if

$$\mathbb{P}(X = x) = (1 - p)^{x-1}p$$
 $x = 1, 2, ...$

Significance of each parameter

p is the probability of success.

Usage

Used to model how many Bernoulli trials we need before we reach the *first* success outcome.

Rui Tong (UNSW Society of Statistics)

इ। २३ में ३ २००० 29 May 2018 38 / 100

- 4 同 6 4 日 6 4 日 6

Poisson Distribution

Definition (Geometric Distribution)

A random variable X follows a Poisson(λ) distribution if

$$\mathbb{P}(X=x)=e^{-\lambda}rac{\lambda^{\chi}}{x!}\qquad x=0.1,2,\ldots$$

Significance of each parameter

 λ is the average number of occurrences of an event

Usage

Used to model events that are rare. Recommended when an occurrence of an event is independent from another occurrence.

Rui Tong (UNSW Society of Statistics)

■ ▶ ◀ ■ ▶ ■ つへの 29 May 2018 39 / 100

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

5 cards without replacement from an ordinary deck of playing cards. What is the probability of getting exactly 2 red cards (i.e., hearts or diamonds)?

- 4 目 ト - 4 日 ト - 4 日 ト

Common distributions

くほと くほと くほと

3

40 / 100

Example - Computing probabilities

Example

5 cards without replacement from an ordinary deck of playing cards. What is the probability of getting exactly 2 red cards (i.e., hearts or diamonds)?

- No replacement Hypergeometric
- N = 52 (number of cards)
- m = 26 (number of favourable cards, i.e. red cards)
- n = 5 (number of draws)

Common distributions

Example - Computing probabilities

Example

5 cards without replacement from an ordinary deck of playing cards. What is the probability of getting exactly 2 red cards (i.e., hearts or diamonds)?

- No replacement Hypergeometric
- N = 52 (number of cards)
- m = 26 (number of favourable cards, i.e. red cards)
- n = 5 (number of draws)

We are considering x = 2.

$$\mathbb{P}(X=2) = \frac{\binom{26}{2}\binom{52-26}{5-2}}{\binom{52}{5}} \approx 0.3251$$

3

- 4 目 ト - 4 日 ト - 4 日 ト

Remark

If we had replacement, we would have a probability $p = \frac{26}{52} = \frac{1}{2}$, so we would consider Bin $(5, \frac{1}{2})$

Rui Tong (UNSW Society of Statistics) MATH2801/2901 Final Revision 29 May 2018 41 / 100

(日) (周) (三) (三)

Example

A busy switchboard receives 150 calls an hour on average. Assume that every call is indep and can be modelled with a Poisson distribution. from each other. Find the probability of

- Exactly 3 calls in a given *minute*
- 2 At least 10 calls in a given 5 minute period.

Naive:

 $X \sim \text{Poisson}(150).$

通 ト イヨ ト イヨト

42 / 100

Example

A busy switchboard receives 150 calls an hour on average. Assume that every call is indep and can be modelled with a Poisson distribution. from each other. Find the probability of

- Exactly 3 calls in a given *minute*
- At least 10 calls in a given 5 minute period.

In Q1, take $X \sim \text{Poisson}(150/60) = \text{Poisson}(2.5)$. Then,

$$\mathbb{P}(X=3) = e^{-2.5} \frac{2.5^3}{3!} \approx 0.2138$$

くほと くほと くほと

Example

A busy switchboard receives 150 calls an hour on average. Assume that every call is indep and can be modelled with a Poisson distribution. from each other. Find the probability of

- Exactly 3 calls in a given *minute*
- 2 At least 10 calls in a given 5 minute period.

In Q2, take $Y \sim \text{Poisson}(2.5 \times 5) = \text{Poisson}(12.5)$. Then,

$$\mathbb{P}(Y \ge 10) = 1 - \mathbb{P}(Y \le 9)$$

= $1 - e^{-12.5} \left(\frac{12.5^0}{0!} + \dots + \frac{12.5^9}{9!} \right)$

通 ト イヨ ト イヨト

Common distributions

Example - Computing probabilities

Example

A busy switchboard receives 150 calls an hour on average. Assume that every call is indep and can be modelled with a Poisson distribution. from each other. Find the probability of

• Exactly 3 calls in a given *minute*

At least 10 calls in a given 5 minute period.

In Q2, take $Y \sim \text{Poisson}(2.5 \times 5) = \text{Poisson}(12.5)$. Then,

$$\begin{split} \mathbb{P}(Y \geq 10) &= 1 - \mathbb{P}(Y \leq 9) \\ &= 1 - \texttt{ppois(9,lambda=12.5,lower=TRUE)} \\ &\approx 0.7985689 \end{split}$$

3

Exponential Distribution

Definition (Exponential Distribution)

A random variable T follows an $Exp(\beta)$ distribution if

$$f_T(t) = rac{1}{eta} e^{-t/eta} \qquad t > 0$$

Significance of each parameter

 $\beta = \frac{1}{\lambda}$. It is the average time taken until the next occurrence of the event

Usage

Based off the memory-less property (see next slide).

Rui Tong (UNSW Society of Statistics)

MATH2801/2901 Final Revision

29 May 2018 43 / 100

イロト 不得下 イヨト イヨト 二日

Exponential Distribution - Lack of Memory

Theorem (Memory-less property)

A continuous distribution satisfies the memoryless property

$$\mathbb{P}(T > s + t \mid T > s) = \mathbb{P}(T > t)$$

if and only if it is an exponential distribution.

Usage

The exponential distribution is used to measure the time taken between consecutive independent events.

Example (2901 course pack)

If, on average, 5 servers go offline during the day, what is the chance that no servers will go offline in the next hour?

A D A D A D A

Example (2901 course pack)

If, on average, 5 servers go offline during the day, what is the chance that no servers will go offline in the next hour?

The number of servers going offline in a day is $X \sim \text{Poisson}(5)$.

So the time taken for the next server to go offline is $T \sim \text{Exp}(0.2)$, measured in days.

- 4 同 6 4 日 6 4 日 6

Example (2901 course pack)

If, on average, 5 servers go offline during the day, what is the chance that no servers will go offline in the next hour?

The number of servers going offline in a day is $X \sim \text{Poisson}(5)$.

So the time taken for the next server to go offline is $T \sim \text{Exp}(0.2)$, measured in days.

$$\therefore$$
 We require $\mathbb{P}\left(T > rac{1}{24}
ight)$

Rui Tong (UNSW Society of Statistics) MATH280

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Example (2901 course pack)

If, on average, 5 servers go offline during the day, what is the chance that no servers will go offline in the next hour?

The number of servers going offline in a day is $X \sim \text{Poisson}(5)$.

So the time taken for the next server to go offline is $T \sim \text{Exp}(0.2)$, measured in days.

$$\mathbb{P}\left(T > \frac{1}{24}\right) = \int_{1/24}^{\infty} 5e^{-5t} dt$$
$$= e^{-5/24}$$

- 4 同 6 4 日 6 4 日 6

Uniform Distribution

Definition (Uniform Distribution)

A random variable X follows a Unif(a, b) distribution if

$$f_X(x) = \frac{1}{b-a} \qquad a < x < b.$$

Significance of the parameters

a and b are the two endpoints.

• • = • • = •

Gamma Distribution (2901)

Definition (Gamma Distribution)

A random variable X follows a Gamma(α, β) distribution if

$$f_X(x) = rac{e^{-x/eta}x^{lpha-1}}{\Gamma(lpha)eta^{lpha}}$$

Significance of the parameters

- β is the same as in the exponential distribution
- α not too obvious, don't worry about it.

- 4 同 6 4 日 6 4 日 6

Relationships between Random Variables (2901)

Acronym - 'iid.' stands for independent, identically distributed

Theorem (Bernoulli sums to Binomial)

If X_1, \ldots, X_n is a sequence of Ber(p) random variables, then

$$Y := \sum_{i=1}^n X_i \sim \mathsf{Bin}(n,p)$$

Theorem (Exponential sums to Gamma)

If X_1, \ldots, X_n is a sequence of $Exp(\beta)$ random variables, then

$$Y := \sum_{i=1}^n X_i \sim \mathsf{Gamma}(\alpha, \beta)$$

(We'll come back to this later.)

Rui Tong (UNSW Society of Statistics)

29 May 2018 48 / 100

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Normal Distribution

Definition (Normal Distribution)

A random variable X follows a $\mathcal{N}(\mu, \sigma^2)$ distribution if

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Significance of the parameters

- μ is its mean
- σ^2 is its variance

Definition (Standard Normal Distribution)

If $Z \sim \mathcal{N}(0, 1)$, then Z follows the standard normal distribution.

Rui Tong (UNSW Society of Statistics)

MATH2801/2901 Final Revision

29 May 2018 49 / 100

Transforms

Loose definition (Transform)

The transformation of a random variable X under some function h, is just h(X).

Rui Tong (UNSW Society of Statistics) MATH2801/2901 Final Revision 29

(日) (周) (三) (三)

Comparing Distributions - QQ Plots

Definition (Quantile-Quantile Plot)

For two data sets, the plot of their quantiles against each other is called a Quantile-Quantile Plot.

Using QQ plots

We seek if the QQ plot between our data and that from a *known* distribution is linear. If this is the case, then they are *linear* transforms of each other.

Sketch of execution

Given some data, we plot its quantiles against that of $\mathcal{N}(0,1)$. If the graph is linear, then the unknown data is also from a normal distribution.

Rui Tong (UNSW Society of Statistics)

MATH2801/2901 Final Revision

29 May 2018 51

イロト イポト イヨト イヨト 二日

51 / 100

Formula (Transforming a Discrete r.v.)

$$\mathbb{P}(h(X) = y) = \sum_{x:h(x)=y} \mathbb{P}(X = x)$$

Um, ye wat?

2

(日) (周) (三) (三)

Example

A random variable has the following distribution:

x
 -1
 0
 1
 2

$$\mathbb{P}(X=x)$$
 0.38
 0.21
 0.14
 0.27

Determine the distribution of $Y = X^3$ and $Z = X^2$.

Rui Tong (UNSW Society of Statistics)

(日) (周) (三) (三)

Example

A random variable has the following distribution:

x
 -1
 0
 1
 2

$$\mathbb{P}(X=x)$$
 0.38
 0.21
 0.14
 0.27

Determine the distribution of $Y = X^3$ and $Z = X^2$.

If X can take the values -1, 0, 1, 2, then $Y = X^3$ takes the values -1, 0, 1, 8.

$$\mathbb{P}(Y = -1) = \mathbb{P}(X^3 = -1) = \mathbb{P}(X = -1) = 0.38$$

Similarly, $\mathbb{P}(Y = 0) = 0.21$, $\mathbb{P}(Y = 1) = 0.14$, $\mathbb{P}(Y = 8) = 0.27$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Example

A random variable has the following distribution:

Determine the distribution of $Y = X^3$ and $Z = X^2$.

On the other hand, X^2 can only take the values of 0, 1, 4.

$$\mathbb{P}(Z=0) = \mathbb{P}(X^2=0) = \mathbb{P}(X=0) = 0.21$$

...and $\mathbb{P}(Z = 4)$ is still equal to 0.27.

Example

A random variable has the following distribution:

Determine the distribution of $Y = X^3$ and $Z = X^2$.

On the other hand, X^2 can only take the values of 0, 1, 4.

$$\mathbb{P}(Z=0) = \mathbb{P}(X^2=0) = \mathbb{P}(X=0) = 0.21$$

 $\mathbb{P}(Z=1) = \mathbb{P}(X^2=1) = \mathbb{P}(X=\pm 1) = 0.38 + 0.14 = 0.62$

...and $\mathbb{P}(Z = 4)$ is still equal to 0.27.

Just to think about... (2901 oriented)

If $X \sim \text{Poisson}(\lambda)$, what must be the distribution of $Y = X^2$

$$\mathbb{P}(Y = y) = \begin{cases} e^{-\lambda} \frac{\lambda^{\sqrt{y}}}{(\sqrt{y})!} & \text{if } y = 0, 1, 4, 9, \dots \\ 0 & \text{otherwise} \end{cases}$$

Rui Tong (UNSW Society of Statistics)

イロト イ理ト イヨト イヨト 二日

Method 1 (Continuous random variable transform theorem)

Consider the transform y = h(x). If h is monotonic wherever $f_X(x)$ is non-zero, then the density of Y = h(X) is

$$f_Y(y) = f_X(h^{-1}(y)) \left| \frac{dx}{dy} \right|$$

Example

Let $X \sim \text{Exp}(\lambda)$. What is the density of $Y = X^2$?

Rui Tong (UNSW Society of Statistics)

MATH2801/2901 Final Revision

29 May 2018 53 / 100

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Example

Let $X \sim \text{Exp}(\lambda)$. What is the density of $Y = X^2$?

•
$$f_X(x) = \frac{1}{\lambda} e^{-x/\lambda}$$
 for all $x > 0$.
• $h(x) = x^2$ is invertible for all $x > 0$, with $h^{-1}(y) = \sqrt{y}$.
• $x = \sqrt{y}$, so $\frac{dx}{dy} = \frac{1}{2\sqrt{y}}$

$$\therefore f_Y(y) = f_X(\sqrt{y}) \left| \frac{1}{2\sqrt{y}} \right|$$

Rui Tong (UNSW Society of Statistics)

2

イロト イポト イヨト イヨト

Example

Let $X \sim \text{Exp}(\lambda)$. What is the density of $Y = X^2$?

$$\therefore f_Y(y) = f_X(\sqrt{y}) \left| \frac{1}{2\sqrt{y}} \right|$$
$$= \frac{1}{\lambda} e^{-\sqrt{y}/\lambda} \left| \frac{1}{2\sqrt{y}} \right|$$
$$= \frac{1}{2\lambda\sqrt{y}} e^{-\sqrt{y}/\lambda}$$

イロト イ理ト イヨト イヨト 二日

Transforms

Transforms on a Continuous Random Variable

Method 2

Brute force via the CDF. (Used when h is not invertible over our region.)

Example

Let $X \sim \text{Unif}(-10, 10)$. What is the density of $Y = X^2$?

Rui Tong (UNSW Society of Statistics)

MATH2801/2901 Final Revision

29 May 2018 54 / 100

Transforms

Transforms on a Continuous Random Variable

Example

Let $X \sim \text{Unif}(-10, 10)$. What is the density of $Y = X^2$?

 $f_X(x) = \frac{1}{20}$ for $x \in (-10, 10)$. But clearly $h(x) = x^2$ is not invertible over this interval!

Example

Let $X \sim \text{Unif}(-10, 10)$. What is the density of $Y = X^2$?

$$egin{aligned} F_Y(y) &= \mathbb{P}(Y \leq y) = \mathbb{P}(X^2 \leq y) \ &= \mathbb{P}(-\sqrt{y} \leq X \leq \sqrt{y}) \ &= F_X(\sqrt{y}) - F_X(-\sqrt{y}) \end{aligned}$$

Rui Tong (UNSW Society of Statistics)

æ

Example

Let $X \sim \text{Unif}(-10, 10)$. What is the density of $Y = X^2$?

$$F_{Y}(y) = \mathbb{P}(Y \le y) = \mathbb{P}(X^{2} \le y)$$
$$= \mathbb{P}(-\sqrt{y} \le X \le \sqrt{y})$$
$$= F_{X}(\sqrt{y}) - F_{X}(-\sqrt{y})$$

Taking derivatives w.r.t y with the chain rule:

$$egin{aligned} f_Y(y) &= rac{1}{2\sqrt{y}} f_X(\sqrt{y}) + rac{1}{2\sqrt{y}} f_X(-\sqrt{y}) \ &= rac{1}{2\sqrt{y}} imes rac{1}{20} + rac{1}{2\sqrt{y}} imes rac{1}{20} \ &= rac{1}{20\sqrt{y}} \end{aligned}$$

Transforms

Where everybody loses marks

For what values of x is the transformed random variable defined for???

Intervals that random variables are defined on

In general, once you transform a random variable, the new interval it's defined on *may not be the same as the old one*.

Rui Tong (UNSW Society of Statistics)

MATH2801/2901 Final Revision

29 May 2018 55 / 100

Finishing off the earlier problems

Example

Let $X \sim \text{Exp}(\lambda)$. What is the density of $Y = X^2$?

$$f_Y(y) = rac{1}{2\lambda\sqrt{y}}e^{-\sqrt{y}/\lambda}$$

Since x > 0 and $y = x^2$, y > 0 as well.

Rui Tong (UNSW Society of Statistics) MATH2801/2901 Final Revision

Finishing off the earlier problems

Example

Let $X \sim \text{Unif}(-10, 10)$. What is the density of $Y = X^2$?

$$f_Y(y) = \frac{1}{20\sqrt{y}}$$

Since -10 < x < 10 and $y = x^2$, we must have 0 < y < 100.

Rui Tong (UNSW Society of Statistics) MATH2801/2901 Final Revision

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Theorem (Standardisation of a Normal r.v.)

Let X be a $\mathcal{N}(\mu, \sigma^2)$ random variable. Then,

$$Z = rac{X-\mu}{\sigma} \sim \mathcal{N}(0,1)$$

Definition (Phi function)

 $\Phi(x)$ is the CDF of the $\mathcal{N}(0,1)$ distribution. It has properties

•
$$\lim_{x \to -\infty} \Phi(x) = 0$$
 and $\lim_{x \to +\infty} \Phi(x) = 1$

•
$$\Phi(-x) = 1 - \Phi(x)$$

- Monotonic increasing (just like every CDF)
- Accessible on R via pnorm(x, lower.tail = TRUE)

Example (2801 notes)

The distribution of young men's heights is approximately normally distributed with mean 174 cm and variance 40.96 cm. What is the probability that a randomly selected young man's height is one-hundred-and-seventy-something cm tall?

Let X be the height of a young man. Then $X \sim \mathcal{N}(174, 40.96)$. We require:

・ロト ・聞ト ・ ヨト ・ ヨト

Example (2801 notes)

The distribution of young men's heights is approximately normally distributed with mean 174 cm and variance 40.96 cm. What is the probability that a randomly selected young man's height is one-hundred-and-seventy-something cm tall?

Let X be the height of a young man. Then $X \sim \mathcal{N}(174, 40.96)$. We require:

$$\mathbb{P}(170 \le X < 180) = \mathbb{P}\left(\frac{170 - 174}{6.4} \le \frac{1X - 174}{6.4} < \frac{180 - 174}{6.4}\right)$$
$$= \mathbb{P}(-0.625 \le Z < 0.9375)$$
$$= \Phi(0.9375) - \Phi(-0.625)$$
$$= \text{pnorm}(0.9375) - \text{pnorm}(-0.625)$$
$$\approx 0.5597638$$

< 回 ト < 三 ト < 三 ト

Example (2801 notes)

The distribution of young men's heights is approximately normally distributed with mean 174 cm and variance 40.96 cm. What is the probability that a randomly selected young man's height is one-hundred-and-seventy-something cm tall?

Remark: We could have also done this with

pnorm(180,mean=174,sd=6.4) -pnorm(170,mean=174,sd=6.4)

- 4 同 6 4 日 6 4 日 6

Normal Distribution

Corollary (Reversing the standardisation) (2901)

If $Z \sim \mathcal{N}(0,1)$, then

$$X = \mu + \sigma Z \sim \mathcal{N}(\mu, \sigma)$$

Rui Tong (UNSW Society of Statistics)

2

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Probability Theory - Random variables context

The notation
$$\mathbb{P}(X = x, Y = y)$$
 means $\mathbb{P}((X = x) \cap (Y = y))$.

Lemma (common sense put to mathematical terms - 2901)

$$\mathbb{P}(X > a, X > b) = \mathbb{P}(X > \max\{a, b\})$$

$$\mathbb{P}(X < a, X < b) = \mathbb{P}(X < \min\{a, b\})$$

Another one (2901)

$$\mathbb{P}(X+Y=a)=\mathbb{P}(X=a-Y)$$

Definition (Conditional Probability)

$$\mathbb{P}(X = x \mid Y = y) = \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(Y = y)}$$

Rui Tong (UNSW Society of Statistics)

MATH2801/2901 Final Revision

29 May 2018 60 / 100

э

<ロ> (日) (日) (日) (日) (日)

Joint Discrete Distribution

Definition (Joint Probability Function)

If X and Y are both discrete random variables, then their joint probability function is denoted

$$\mathbb{P}(X=x,Y=y)$$

In 2801, this is also denoted $f_{X,Y}(x,y)$

Properties of the joint probability function

•
$$\mathbb{P}(X = x, Y = y) \ge 0$$
 for all x, y

•
$$\sum_{\text{all } x} \sum_{\text{all } y} = 1$$

Rui Tong (UNSW Society of Statistics)

29 May 2018 61 / 100

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Joint Continuous Distribution

Definition (Joint Density Function)

If X and Y are both continuous random variables, then their joint density function is denoted

 $f_{X,Y}(x,y).$

Properties of the continuous random variable

•
$$f_{X,Y}(x,y) \ge 0$$
 for all x,y

•
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx \, dy = 1$$

Rui Tong (UNSW Society of Statistics)

3 29 May 2018 62 / 100

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

Computing Probabilities - Bivariate Discrete

Example

The joint probability distribution of X and Y is

Determine $\mathbb{P}(X = 0, Y = 1)$, $\mathbb{P}(X \ge 1, Y < 1)$ and $\mathbb{P}(X - Y = 1)$

$$\mathbb{P}(X=0,Y=1)=\frac{1}{8}$$

Rui Tong (UNSW Society of Statistics)

29 May 2018 63 / 100

- 32

・ロト ・得ト ・ヨト ・ヨト

Computing Probabilities - Bivariate Discrete

Example

The joint probability distribution of X and Y is

Determine $\mathbb{P}(X = 0, Y = 1)$, $\mathbb{P}(X \ge 1, Y < 1)$ and $\mathbb{P}(X - Y = 1)$

$$\mathbb{P}(X \ge 1, Y < 1) = \mathbb{P}(X = 1, Y = 0) + \mathbb{P}(X = 2, Y = 0)$$

= $\frac{1}{8} + \frac{3}{16} = \frac{5}{16}$

3

イロン イ理と イヨン -

Computing Probabilities - Bivariate Discrete

Example

The joint probability distribution of X and Y is

Determine $\mathbb{P}(X = 0, Y = 1)$, $\mathbb{P}(X \ge 1, Y < 1)$ and $\mathbb{P}(X - Y = 1)$

$$\mathbb{P}(X - Y = 1) = \mathbb{P}(X = 2, Y = 1) + \mathbb{P}(X = 1, Y = 0)$$
$$= \frac{1}{4} + \frac{1}{8} = \frac{3}{8}$$

Rui Tong (UNSW Society of Statistics)

MATH2801/2901 Final Revision

29 May 2018 63 / 100

・ 同 ト ・ ヨ ト ・ ヨ ト

Computing Probabilities - Bivariate Continuous

Joint continuous distributions

Unless you know how to use indicator functions really well (2901), sketch the region!

Example

$$f_{X,Y}(x,y) = \frac{1}{x^2 y^2}$$
 $x \ge 1, y \ge 1$

is the joint density of the continuous r.v.s X and Y. Find $\mathbb{P}(X < 2, Y > 4)$ and $\mathbb{P}(X < Y^2)$.

Rui Tong (UNSW Society of Statistics)

|山下 |田下 |田下

Computing Probabilities - Bivariate Continuous

Example

$$f_{X,Y}(x,y) = \frac{1}{x^2y^2} \qquad x \ge 1, y \ge 1$$

is the joint density of the continuous r.v.s X and Y. Find $\mathbb{P}(X < 2, Y \ge 4)$ and $\mathbb{P}(X \le Y^2)$.

$$\mathbb{P}(X < 2, Y \ge 4) = \int_{1}^{2} \int_{4}^{\infty} \frac{1}{x^{2}y^{2}} \, dy \, dx$$
$$= \int_{1}^{2} \frac{1}{4x^{2}} \, dx$$
$$= \frac{1}{8}$$

3

- 4 目 ト - 4 日 ト - 4 日 ト

Computing Probabilities - Bivariate Continuous

Example

$$f_{X,Y}(x,y) = \frac{1}{x^2y^2} \qquad x \ge 1, y \ge 1$$

is the joint density of the continuous r.v.s X and Y. Find $\mathbb{P}(X < 2, Y \ge 4)$ and $\mathbb{P}(X \le Y^2)$.

$$\mathbb{P}(X \le Y^2) = \int_1^\infty \int_1^{x^2} \frac{1}{x^2 y^2} \, dy \, dx$$
$$= \int_1^\infty \left(\frac{1}{x^2} - \frac{1}{x^4}\right) \, dx$$
$$= \frac{2}{3}$$

Rui Tong (UNSW Society of Statistics)

MATH2801/2901 Final Revision

29 May 2018 64 / 100

(日) (周) (三) (三)

Expectation

Note that $\mathbb{E}[X, Y]$ is not well defined.

Definition (Expectation)

Suppose that g is a function from \mathbb{R}^2 to \mathbb{R} . For discrete random variables X and Y,

$$\mathbb{E}[g(X,Y)] = \sum_{\mathsf{all } x} \sum_{\mathsf{all } y} g(x,y) \mathbb{P}(X = x, Y = y)$$

For continuous random variables X and Y,

$$\mathbb{E}[g(X,Y)] = \iint_{\mathbb{R}^2} g(x,y) f_{X,Y}(x,y) \, dx \, dy$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Expectation Computations

Example

Find $\mathbb{E}[Y^2 \ln X]$ for the following distribution

 $\mathbb{E}[Y^2 \ln X] = 1^2 \ln 1\mathbb{P}(X = 1, Y = 1) + 2^2 \ln 1\mathbb{P}(X = 1, Y = 2)$

Rui Tong (UNSW Society of Statistics)

3

- 4 同 ト 4 三 ト - 4 三 ト

Expectation Computations

Example

Find $\mathbb{E}[Y^2 \ln X]$ for the following distribution

$$\mathbb{E}[Y^2 \ln X] = 1^2 \ln 1\mathbb{P}(X = 1, Y = 1) + 2^2 \ln 1\mathbb{P}(X = 1, Y = 2) \\ + 1^2 \ln 2\mathbb{P}(X = 2, Y = 1) + 2^2 \ln 2\mathbb{P}(X = 2, Y = 2)$$

Rui Tong (UNSW Society of Statistics)

29 May 2018 66 / 100

æ

過 ト イヨ ト イヨト

Expectation Computations

Example

Find $\mathbb{E}[Y^2 \ln X]$ for the following distribution

$$\mathbb{E}[Y^2 \ln X] = 1^2 \ln 1\mathbb{P}(X = 1, Y = 1) + 2^2 \ln 1\mathbb{P}(X = 1, Y = 2) \\ + 1^2 \ln 2\mathbb{P}(X = 2, Y = 1) + 2^2 \ln 2\mathbb{P}(X = 2, Y = 2) \\ = \left(\frac{3}{10} + 2 \times \frac{2}{5}\right) \ln 2 = \frac{11 \ln 2}{10}$$

Rui Tong (UNSW Society of Statistics)

29 May 2018

æ

66 / 100

過 ト イヨ ト イヨト

Mostly 2901-oriented interlude

Problem

Examine the existence of $\mathbb{E}[XY]$ for the earlier example:

$$f_{X,Y}(x,y) = \frac{1}{x^2y^2} \text{ for } x, y \ge 1.$$

Rui Tong (UNSW Society of Statistics) MATH2801/2901 Final Revision

æ

- 4 同 6 4 日 6 4 日 6

Cumulative Distribution Function (Bivariate)

Definition (Cumulative Distribution Function)

The CDF $F_{X,Y}(x, y)$ is the function given by

$$F_{X,Y}(x,y) = \mathbb{P}(X \leq x, Y \leq y)$$

Finding a CDF (Continuous case)

$$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(u,v) \, du \, dv$$

Example

For the earlier example, $F_{X,Y}(x,y) = 0$ if x < 1 or y < 1. Else:

$$F_{X,Y}(x,y) = \int_1^x \int_1^y \frac{1}{u^2 v^2} \, du \, dv = \left(1 - \frac{1}{x}\right) \left(1 - \frac{1}{y}\right)$$

Rui Tong (UNSW Society of Statistics)

MATH2801/2901 Final Revision

29 May 2018 68 / 100

Marginal Functions

Definition (Marginal Probability Function)

For discrete r.v.s X and Y with mass function $\mathbb{P}(X = x, Y = y)$,

$$\mathbb{P}(X = x) = \sum_{\text{all } y} \mathbb{P}(X = x, Y = y)$$
$$\mathbb{P}(Y = y) = \sum_{\text{all } x} \mathbb{P}(X = x, Y = y)$$

Definition (Marginal Density Function)

For continuous r.v.s X and Y with density function $f_{X,Y}(x,y)$,

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy$$

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx$$

Rui Tong (UNSW Society of Statistics)

29 May 2018 69 / 100

Independence

Recall that $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

Definition (Independence of random variables)

Two random variables are independent when:

$$\mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x)\mathbb{P}(Y = y) \qquad (\text{discrete case})$$
$$f_{X,Y}(x, y) = f_X(x)f_Y(y) \qquad (\text{continuous case})$$

Example

Test if X and Y are independent, for

$$f_{X,Y}(x,y) = \frac{1}{x^2y^2} \qquad x,y \ge 1.$$

Rui Tong (UNSW Society of Statistics)

■ ▶ ◀ ■ ▶ ■ つへで 29 May 2018 70 / 100

・ロト ・聞ト ・ ヨト ・ ヨト

Independence

Example

Test if X and Y are independent, for

$$f_{X,Y}(x,y) = \frac{1}{x^2y^2}$$
 $x, y \ge 1.$

$$f_X(x) = \int_1^\infty \frac{1}{x^2 y^2} \, dy$$
$$= \frac{1}{x^2} \qquad x \ge 1$$

Similarly
$$f_Y(y) = rac{1}{y^2}$$
 $y \ge 1$.

Therefore since $f_{X,Y}(x, y) = f_X(x)f_Y(y)$, X and Y are independent.

29 May 2018 70 / 100

71 / 100

Independence (Alternate method 1)

Lemma (Independence of random variables)

Two random variables are independent if and only if

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$

i.e. you can replace the density with the CDF.

Conditional Functions

Definition (Conditional Probability Function)

The conditional probability function of X, given Y = y, is

$$\mathbb{P}(X = x \mid Y = y) = \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(Y = y)}$$

Definition (Conditional Density Function)

The conditional density function of X, given Y = y, is

$$f_{X|Y}(x \mid y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

Rui Tong (UNSW Society of Statistics)

29 May 2018 72 / 100

イロト 不得下 イヨト イヨト 二日

Conditional Functions

Example

Determine
$$\mathbb{P}(X = x \mid Y = 2)$$
, i.e. $f_{X|Y}(x \mid 2)$, for

		У	
		1	2
х	1	1/10	1/5
	2	3/10	2/5

$$\mathbb{P}(Y = 2) = \mathbb{P}(X = 1, Y = 2) + \mathbb{P}(X = 2, Y = 2)$$
$$= \frac{1}{5} + \frac{2}{5}$$
$$= \frac{3}{5}.$$

æ

<ロ> (日) (日) (日) (日) (日)

Conditional Functions

Example

Determine $\mathbb{P}(X = x \mid Y = 2)$, i.e. $f_{X|Y}(x \mid 2)$, for

		У	
		1	2
х	1	1/10	1/5
	2	3/10	2/5

$$\mathbb{P}(Y = 2) = \frac{3}{5}$$
$$\mathbb{P}(X = 1 \mid Y = 2) = \frac{\mathbb{P}(X = 1, Y = 2)}{\mathbb{P}(Y = 2)} = \frac{1}{3}$$
$$\mathbb{P}(X = 2 \mid Y = 2) = \frac{\mathbb{P}(X = 2, Y = 2)}{\mathbb{P}(Y = 2)} = \frac{2}{3}$$

MATH2801/2901 Final Revision

æ

Independence (Alternate method 2)

Lemma (Independence of random variables)

Two random variables are independent if and only if

$$f_{Y|X}(y \mid x) = f_Y(y)$$

or

$$f_{X|Y}(x \mid y) = f_X(x)$$

Investigation

For the earlier example with $f_{X,Y}(x,y) = x^{-2}y^{-2}$ for $x \ge 1$, $y \ge 1$, prove the independence of X and Y using this lemma instead.

Rui Tong (UNSW Society of Statistics)

29 May 2018 74 / 100

イロト イポト イヨト イヨト 二日

Definition (Conditional Expectation)

$$\mathbb{E}[X \mid Y = y] = \begin{cases} \sum_{\text{all } x} x \mathbb{P}(X = x \mid Y = y) & \text{discrete case} \\ \int_{-\infty}^{\infty} x f_{X|Y}(x \mid y) \, dx & \text{continuous case} \end{cases}$$

Definition (Conditional Variance)

$$\mathsf{Var}(X \mid Y = y) = \mathbb{E}[X^2 \mid Y = y] - \left(\mathbb{E}[X \mid Y = y]\right)^2$$

(And similarly for Y. Basically, just add the condition to the original formula.)

Rui Tong (UNSW Society of Statistics)

MATH2801/2901 Final Revision

29 May 2018 75 / 100

3

イロト 不得下 イヨト イヨト

Example

Find $\mathbb{E}[X \mid Y = 2]$ and $Var(X \mid Y = 2)$ for

		У	
		1	2
х	1	1/10	1/5
	2	3/10	2/5

$$\mathbb{E}[X \mid Y = 2] = 1 \cdot \mathbb{P}(X = 1 \mid Y = 2) + 2 \cdot \mathbb{P}(X = 2 \mid Y = 2)$$

= $1 \times \frac{1}{3} + 2 \times \frac{2}{3}$
= $\frac{5}{3}$.

Rui Tong (UNSW Society of Statistics)

29 May 2018 75 / 100

æ

Example

Find
$$\mathbb{E}[X \mid Y = 2]$$
 and $Var(X \mid Y = 2)$ for

		У	
		1	2
х	1	1/10	1/5
	2	3/10	2/5

$$\mathbb{E}[X^2 \mid Y = 2] = 1^2 \cdot \mathbb{P}(X = 1 \mid Y = 2) + 2^2 \cdot \mathbb{P}(X = 2 \mid Y = 2)$$

= $1^2 \times \frac{1}{3} + 2^2 \times \frac{2}{3}$
= 3.

Rui Tong (UNSW Society of Statistics)

29 May 2018 75 / 100

æ

(日) (周) (三) (三)

Example

Find
$$\mathbb{E}[X \mid Y = 2]$$
 and $Var(X \mid Y = 2)$ for

		у	
		1	2
х	1	1/10	1/5
	2	3/10	2/5

$$Var(X^2 | Y = 2) = 3 - \left(\frac{5}{3}\right)^2 = \frac{2}{9}$$

Rui Tong (UNSW Society of Statistics)

29 May 2018 75 / 100

æ

イロト イヨト イヨト

Covariance

Let
$$\mathbb{E}[X] = \mu_X$$
 and $\mathbb{E}[Y] = \mu_y$.

Definition (Covariance)

$$\operatorname{Cov}(X,Y) = \mathbb{E}\Big[(X-\mu_X)(Y-\mu_Y)\Big]$$

Theorem (Covariance Formula)

$$Cov(X, Y) = \mathbb{E}[XY] - \mu_X \mu_Y$$

Definition (Correlation)

$$\operatorname{Corr}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\operatorname{SD}(X)\operatorname{SD}(Y)} = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$$

Rui Tong (UNSW Society of Statistics)

29 May 2018 76 / 100

æ

(日) (同) (三) (三)

Covariance results

Theorem (Further properties of taking variances)

•
$$\operatorname{Var}(aX + bY) = a^2 \operatorname{Var}(X) + b^2 \operatorname{Var}(Y) + 2ab \operatorname{Cov}(X, Y)$$

•
$$\operatorname{Var}(X + Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X, Y)$$

Theorem (Properties of taking covariances)

•
$$Cov(aX + bY, Z) = a^2 Cov(X, Z) + b^2 Cov(Y, Z)$$

•
$$\operatorname{Cov}(X, aY + bZ) = a^2 \operatorname{Cov}(X, Y) + b^2 \operatorname{Cov}(X, Z)$$

•
$$Cov(X, X) = Var(X)$$

Theorem (Consequence of zero covariance)

$$\operatorname{Cov}(X,Y) = 0 \iff \mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

Rui Tong (UNSW Society of Statistics)

≣ ▶ ४ ॾ । ► = ०००० 29 May 2018 77 / 100

(日) (同) (日) (日) (日)

Working with the covariance - Definition

Example

Let $f_{X,Y}(x,y) = xy$ for $x \in [0,1]$, $y \in [0,2]$. Determine their covariance in the old fashioned way.

Step 1: Determine the marginal densities

$$f_X(x) = \int_0^2 xy \, dy = 2x \qquad (0 \le x \le 1)$$

$$f_Y(y) = \int_0^1 xy \, dx = \frac{y}{2} \qquad (0 \le y \le 2)$$

Working with the covariance - Definition

Example

Let $f_{X,Y}(x,y) = xy$ for $x \in [0,1]$, $y \in [0,2]$. Determine their covariance in the old fashioned way.

Step 2: Find the marginal expectations $\mathbb{E}[X]$ and $\mathbb{E}[Y]$

$$\mathbb{E}[X] = \int_0^1 2x^2 \, dx = \frac{2}{3}$$
$$\mathbb{E}[Y] = \int_0^2 \frac{y^2}{2} \, dy = \frac{4}{3}$$

Rui Tong (UNSW Society of Statistics)

29 May 2018 78 / 100

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

Working with the covariance - Definition

Example

Let $f_{X,Y}(x, y) = xy$ for $x \in [0, 1]$, $y \in [0, 2]$. Determine their covariance in the old fashioned way.

Step 3: Find $\mathbb{E}[XY]$

$$\mathbb{E}[XY] = \int_0^1 \int_0^2 xy \, dy \, dx = \cdots = \frac{8}{9}$$

Step 4: Plug in:

$$\operatorname{Cov}(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] = \frac{8}{9} - \frac{2}{3} \times \frac{4}{3} = 0.$$

3

通 ト イヨ ト イヨト

Working with the covariance - Definition

Example

Let $f_{X,Y}(x,y) = xy$ for $x \in [0,1]$, $y \in [0,2]$. Determine their covariance in the old fashioned way.

That was a horrible idea.

- Can prove that X and Y are independent
- Can use the Fubini-Tonelli theorem to just check that $\mathbb{E}[XY]$ equals $\mathbb{E}[X]\mathbb{E}[Y]$

伺下 イヨト イヨト

Working with the covariance - Formulae

Example (2901)

Let $Z \sim \mathcal{N}(0,1)$ and W satisfy $\mathbb{P}(X = 1) = \mathbb{P}(X = -1) = \frac{1}{2}$. Suppose that W and Z are independent and define X := WZ.

Show that Cov(X, Z) = 0.

Noting that $\mathbb{E}[Z] = 0$,

$$Cov(X, Z) = \mathbb{E}[XZ] - \mathbb{E}[X]\mathbb{E}[Z] = \mathbb{E}[XZ]$$

Rui Tong (UNSW Society of Statistics) MATH2801/

イロト 不得 トイヨト イヨト 二日

Working with the covariance - Formulae

Example (2901)

Let $Z \sim \mathcal{N}(0,1)$ and W satisfy $\mathbb{P}(X = 1) = \mathbb{P}(X = -1) = \frac{1}{2}$. Suppose that W and Z are independent and define X := WZ.

Show that Cov(X, Z) = 0.

Noting that $\mathbb{E}[Z] = 0$,

$$Cov(X, Z) = \mathbb{E}[XZ] - \mathbb{E}[X]\mathbb{E}[Z] = \mathbb{E}[XZ]$$

Subbing in X = WZ and using independence gives

$$\operatorname{Cov}(X,Z) = \mathbb{E}[WZ^2] = \mathbb{E}[W]\mathbb{E}[Z^2]$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Working with the covariance - Formulae

Example (2901)

Let $Z \sim \mathcal{N}(0,1)$ and W satisfy $\mathbb{P}(X = 1) = \mathbb{P}(X = -1) = \frac{1}{2}$. Suppose that W and Z are independent and define X := WZ.

Show that Cov(X, Z) = 0.

Observe that

$$\mathbb{E}[W] = \mathbb{1P}(X = 1) - \mathbb{1P}(X = -1) = 0.$$

Hence $Cov(X, Z) = \mathbb{E}[W]\mathbb{E}[Z^2] = 0.$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Uncorrelatedness \implies Independence

In general, the implication is one-sided.

Exception: X and Y are bivariate normal.

Rui Tong (UNSW Society of Statistics) MATH280

MATH2801/2901 Final Revision

29 May 2018 80 / 100

3

イロト イポト イヨト イヨト

イロト イ理ト イヨト イヨト

3

81 / 100

Having a hard time with formulas?

- Know all the formulae for the single variable case
- **2** Know that $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$
- Ill of the bivariate formulae stem from these

Theorem (Bivariate Transform Formula)

Suppose X and Y have joint density function $f_{X,Y}$ and let U and V be transforms on these random variables. Then the joint density of U, V is

$$f_{U,V}(u,v) = f_{X,Y}(x,y) |\det(J)|$$

where J is the Jacobian matrix

$$J = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}$$

Remember: x above y and u left of v

Example (Course pack)

Let X and Y be i.i.d. Exp(4) r.v.s. Find the joint density of U and V if

$$U = \frac{1}{2}(X - Y)$$
 and $V = Y$.

Example (Course pack)

Let X and Y be i.i.d. Exp(4) r.v.s. Find the joint density of U and V if

$$U=rac{1}{2}(X-Y)$$
 and $V=Y.$

We have y = v and

$$u = \frac{1}{2}(x - v) \implies x = 2u + v.$$

 $\therefore J = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$ and $\det(J) = 2.$

29 May 2018 82 / 100

3

イロト イヨト イヨト イヨト

Example (Course pack)

Let X and Y be i.i.d. Exp(4) r.v.s. Find the joint density of U and V if

$$U=rac{1}{2}(X-Y) ext{ and } V=Y.$$

$$f_{X,Y}(x,y) = \frac{1}{16}e^{-(x+y)/4}$$

Since y = v and x = 2u + v, we get x + y = 2u + 2v. Therefore

$$f_{U,V}(u,v) = \frac{1}{8}e^{-(u+v)/2}.$$

Rui Tong (UNSW Society of Statistics)

29 May 2018 82 / 100

æ

イロン イ理と イヨン -

Example (Course pack)

Let X and Y be i.i.d. Exp(4) r.v.s. Find the joint density of U and V if

$$U = \frac{1}{2}(X - Y)$$
 and $V = Y$.

We know that y > 0. Since v = y, it immediately follows that v > 0.

イロト イポト イヨト イヨト

Example (Course pack)

Let X and Y be i.i.d. Exp(4) r.v.s. Find the joint density of U and V if

$$U=rac{1}{2}(X-Y)$$
 and $V=Y$.

We know that y > 0. Since v = y, it immediately follows that v > 0. However, x > 0 and x = 2u + v. Therefore:

$$2u + v > 0$$
$$u > -\frac{v}{2}$$

3

Bivariate Transform in Sums (Continuous case) (2901)

Method:

- Set U = X + Y and V = Y
- **2** Apply the bivariate transform to find $f_{U,V}$
- Sompute the marginal density f_U

Convolutions

For random variables X and Y, let Z = X + Y.

Lemma (Discrete Convolution)

$$\mathbb{P}(Z=z) = \sum_{y} \mathbb{P}(X=z-y)\mathbb{P}(Y=y)$$

Lemma (Continuous Convolution)

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(z-y) f_Y(y) \, dy$$

Rui Tong (UNSW Society of Statistics)

29 May 2018 84 / 100

æ

(日) (周) (三) (三)

Convolutions

The hard part is (again) figuring what to sum/integrate over.

Rui Tong (UNSW Society of Statistics)

MATH2801/2901 Final Revision

29 May 2018 84 / 100

э

Image: A match a ma

Example

Let X and Y be i.i.d. Geom(p). Use convolutions to find the probability function of Z := X + Y.

The probability functions are $\mathbb{P}(X = x) = p(1 - p)^x$ for x = 1, 2, 3, ...,and $\mathbb{P}(Y = y) = p(1 - p)^y$ for y = 1, 2, 3, ... Therefore:

$$\mathbb{P}(X = z - y) = p(1 - p)^{z - y}$$

for $z - y = 1, 2, 3, \ldots$,

Example

Let X and Y be i.i.d. Geom(p). Use convolutions to find the probability function of Z := X + Y.

The probability functions are $\mathbb{P}(X = x) = p(1 - p)^x$ for x = 1, 2, 3, ...,and $\mathbb{P}(Y = y) = p(1 - p)^y$ for y = 1, 2, 3, ... Therefore:

$$\mathbb{P}(X=z-y)=\rho(1-\rho)^{z-y}$$

for z - y = 1, 2, 3, ..., i.e. $y - z = ..., -3, -2, -1 \iff y = ..., z - 3, z - 2, z - 1$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Example

Let X and Y be i.i.d. Geom(p). Use convolutions to find the probability function of Z := X + Y.

Hence $\mathbb{P}(X = z - y)\mathbb{P}(Y = y) = p(1-p)^{z-y}p(1-p)^y = p^2(1-p)^z$, when y = 0, 1, 2, ...

and
$$y = \dots, z - 3, z - 2, z - 1$$
.

Therefore, y = 0, 1, 2, ..., z - 3, z - 2, z - 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Example

Let X and Y be i.i.d. Geom(p). Use convolutions to find the probability function of Z := X + Y.

$$\therefore \mathbb{P}(Z = z) = \sum_{y=0}^{z-1} p^2 (1-p)^z$$
$$= zp^2 (1-p)^z \qquad (\text{sum only depends on } y!)$$

29 May 2018 85 / 100

3

(日) (周) (三) (三)

Example

Let X and Y be i.i.d. Geom(p). Use convolutions to find the probability function of Z := X + Y.

$$\therefore \mathbb{P}(Z = z) = \sum_{y=0}^{z-1} p^2 (1-p)^z$$
$$= zp^2 (1-p)^z \qquad (\text{sum only depends on } y!)$$

Since x = 1, 2, ... and y = 1, 2, ..., i.e. x and y are natural numbers greater than or equal to 1, z = x + y = 2, 3, 4, ...

3

イロト イポト イヨト イヨト

Example

Let X and Y be i.i.d. Exp(1). Prove that Z := X + Y follows a Gamma(2, 1) distribution using a convolution.

The densities are $f_X(x) = e^{-x}$ for x > 0, and $f_Y(y) = e^{-y}$ for y > 0. Therefore:

$$f_X(z-y) = e^{-z+y}$$
, for $z-y > 0$, i.e. $y < z$

Rui Tong (UNSW Society of Statistics)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Example

Let X and Y be i.i.d. Exp(1). Prove that Z := X + Y follows a Gamma(2, 1) distribution using a convolution.

The densities are $f_X(x) = e^{-x}$ for x > 0, and $f_Y(y) = e^{-y}$ for y > 0. Therefore:

$$f_X(z-y) = e^{-z+y}$$
, for $z-y > 0$, i.e. $y < z$

Hence $f_X(z-y)f_Y(y) = e^{-z}$ when y < z and y > 0. i.e.

$$f_X(z - y)f_Y(y) = e^{-z}$$
 for $0 < y < z$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Example

Let X and Y be i.i.d. Exp(1). Prove that Z := X + Y follows a Gamma(2, 1) distribution using a convolution.

$$\therefore f_Z(z) = \int_0^z e^{-z} \, dy$$
$$= e^{-z} z$$

Rui Tong (UNSW Society of Statistics)

29 May 2018 86 / 100

3

- 4 同 6 4 日 6 4 日 6

Example

Let X and Y be i.i.d. Exp(1). Prove that Z := X + Y follows a Gamma(2, 1) distribution using a convolution.

$$\therefore f_Z(z) = \int_0^z e^{-z} dy$$
$$= e^{-z} z$$
$$= \frac{e^{-z/1} z^{2-1}}{\Gamma(2) 1^2}$$

Since x > 0 and y > 0, z = x + y > 0. Thus Z has the density of a Gamma(2,1) random variable.

イロト 不得下 イヨト イヨト

Via Moment Generating Functions

Theorem (MGF of a sum)

If X and Y are independent random variables, then

$$m_{X+Y}(u) = m_X(u)m_Y(u)$$

Example

Let X and Y be i.i.d. Exp(1). Prove that Z := X + Y follows a Gamma(2, 1) distribution from quoting MGFs.

Rui Tong (UNSW Society of Statistics)

29 May 2018 87 / 100

イロト イポト イヨト イヨト 二日

Via Moment Generating Functions

Example

Let X and Y be i.i.d. Exp(1). Prove that Z := X + Y follows a Gamma(2, 1) distribution from quoting MGFs.

$$m_X(u) = rac{1}{1-u}$$
 and $m_Y(u) = rac{1}{1-u}$. So clearly $m_Z(u) = m_X(u)m_Y(u) = \left(rac{1}{1-u}
ight)^2,$

which is the MGF of a Gamma(2,1) distribution. Hence Z follows this distribution as well.

Common Sums

For independent random variables:

- Sum of normal is normal add means and variances
- Sum of *n* exponentials with the same parameter β is Gamma (n, β)
- Sum of Gamma with same second component is still Gamma just add the first component
- Sum of Poisson is Poisson add the parameter
- Sum of *n* Bernoullis with the same parameter *p* is Bin(n, p)
- Sum of Binomial with the same probability parameter p is still binomial
 - just add the first component

Modes of Convergence (2901)

Definition (Convergence Almost Surely)

$$X_n \stackrel{\text{a.s.}}{\to} X \iff \mathbb{P}\left(\lim_{n \to \infty} X_n = X\right) = 1$$

Definition (Convergence in Probability)

$$X_n \stackrel{\mathbb{P}}{\to} X \iff \lim_{n \to \infty} \mathbb{P}(|X_n - X| > \epsilon) = 0 \quad \forall \epsilon > 0$$

Definition (Convergence in Distribution)

$$X_n \stackrel{d}{\to} X \iff \lim_{n \to \infty} F_{X_n}(x) = F_X(x)$$

Rui Tong (UNSW Society of Statistics)

MATH2801/2901 Final Revision

29 May 2018 89 / 100

3

(日) (周) (三) (三)

Convergence in Distribution Proof (2901)

Example

Let X_1, \ldots, X_n be a sequence of i.i.d. Unif(0, 1) random variables. Define $Y_n = n \min\{U_1, \ldots, U_n\}$. Prove that $Y_n \stackrel{d}{\rightarrow} Y$, where $Y \sim \text{Exp}(1)$.

$$F_{Y_n}(y) = \mathbb{P}(Y_n \le y) = \mathbb{P}(n\min\{U_1, \dots, U_n\} \le y)$$
$$= \mathbb{P}\left(\min\{U_1, \dots, U_n\} \le \frac{y}{n}\right)$$

3

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

Rui Tong (UNSW Society of Statistics)

Convergence in Distribution Proof (2901)

Example

Let X_1, \ldots, X_n be a sequence of i.i.d. Unif(0, 1) random variables. Define $Y_n = n \min\{U_1, \ldots, U_n\}$. Prove that $Y_n \stackrel{d}{\rightarrow} Y$, where $Y \sim \text{Exp}(1)$.

$$F_{Y_n}(y) = \mathbb{P}(Y_n \le y) = \mathbb{P}(n \min\{U_1, \dots, U_n\} \le y)$$
$$= \mathbb{P}\left(\min\{U_1, \dots, U_n\} \le \frac{y}{n}\right)$$
$$= 1 - \mathbb{P}\left(\min\{U_1, \dots, U_n\} \ge \frac{y}{n}\right)$$

In general, if $\min\{x_1, \ldots, x_n\} \leq x$, then **not every** $x_i \leq x$.

Convergence in Distribution Proof (2901)

Example

Let X_1, \ldots, X_n be a sequence of i.i.d. Unif(0, 1) random variables. Define $Y_n = n \min\{U_1, \ldots, U_n\}$. Prove that $Y_n \stackrel{d}{\rightarrow} Y$, where $Y \sim \text{Exp}(1)$.

$$F_{Y_n}(y) = \mathbb{P}(Y_n \le y) = \mathbb{P}(n \min\{U_1, \dots, U_n\} \le y)$$

= $\mathbb{P}\left(\min\{U_1, \dots, U_n\} \le \frac{y}{n}\right)$
= $1 - \mathbb{P}\left(\min\{U_1, \dots, U_n\} \ge \frac{y}{n}\right)$
= $1 - \mathbb{P}\left(U_1 > \frac{y}{n}, \dots, U_n > \frac{y}{n}\right)$

But it is true that if $\min\{U_1, \ldots, U_n\} \ge x$, then every $x_i \ge x$.

Convergence in Distribution Proof (2901)

Example

Let X_1, \ldots, X_n be a sequence of i.i.d. Unif(0, 1) random variables. Define $Y_n = n \min\{U_1, \ldots, U_n\}$. Prove that $Y_n \stackrel{d}{\to} Y$, where $Y \sim \text{Exp}(1)$.

$$\begin{split} F_{Y_n}(y) &= 1 - \mathbb{P}\left(U_1 > \frac{y}{n}, \dots, U_n > \frac{y}{n}\right) \\ &= 1 - \mathbb{P}\left(U_1 > \frac{y}{n}\right) \dots \mathbb{P}\left(U_n > \frac{y}{n}\right) \qquad (\text{independence}) \\ &= 1 - \left[\mathbb{P}\left(U_1 > \frac{y}{n}\right)\right]^n \qquad (\text{id. distributed}) \end{split}$$

イロト 不得下 イヨト イヨト 二日

Convergence in Distribution Proof (2901)

Example

Let X_1, \ldots, X_n be a sequence of i.i.d. Unif(0, 1) random variables. Define $Y_n = n \min\{U_1, \ldots, U_n\}$. Prove that $Y_n \stackrel{d}{\rightarrow} Y$, where $Y \sim \text{Exp}(1)$.

$$\begin{aligned} F_{\mathbf{Y}_n}(y) &= 1 - \mathbb{P}\left(U_1 > \frac{y}{n}, \dots, U_n > \frac{y}{n}\right) \\ &= 1 - \mathbb{P}\left(U_1 > \frac{y}{n}\right) \dots \mathbb{P}\left(U_n > \frac{y}{n}\right) \qquad \text{(independence)} \\ &= 1 - \left[\mathbb{P}\left(U_1 > \frac{y}{n}\right)\right]^n \qquad \text{(id. distributed)} \\ &= 1 - \left[\int_{y/n}^1 1 \, dt\right]^n = 1 - \left(1 - \frac{y}{n}\right)^n \end{aligned}$$

90 / 100

イロト 不得下 イヨト イヨト 二日

Convergence in Distribution Proof (2901)

Example

Let X_1, \ldots, X_n be a sequence of i.i.d. Unif(0, 1) random variables. Define $Y_n = n \min\{U_1, \ldots, U_n\}$. Prove that $Y_n \stackrel{d}{\to} Y$, where $Y \sim \text{Exp}(1)$.

$$\therefore \lim_{n\to\infty} F_{Y_n}(y) = 1 - e^{-y} = F_Y(y)$$

Hence $Y_n \xrightarrow{d} Y$.

Rui Tong (UNSW Society of Statistics)

MATH2801/2901 Final Revision

29 May 2018 90 / 100

3

- 4 同 6 4 日 6 4 日 6

Stronger forms of convergence

Lemma ('Strength' of convergence)

Almost sure convergence \implies Convergence in \mathbb{P} \implies Convergence in d

Takeout for 2801

When using a theorem that says $\xrightarrow{\mathcal{D}}$, you can replace it with \xrightarrow{P} .

Rui Tong (UNSW Society of Statistics)

MATH2801/2901 Final Revision

29 May 2018 91 / 100

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Law of Large Numbers

Lemma (Weak Law of Large Numbers)

For a sequence of i.i.d. r.v.s X_1, \ldots, X_n , with mean μ and finite variance σ^2 ,

$$\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{\mathbb{P}} \mu$$

Lemma (Strong Law of Large Numbers)

For a sequence of i.i.d. r.v.s X_1, \ldots, X_n , with mean μ and finite variance σ^2 ,

$$\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i \stackrel{\text{a.s.}}{\to} \mu$$

Rui Tong (UNSW Society of Statistics)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Law of Large Numbers

For the interested reader: The strong law fails usually when your random variable is badly behaved.

э

Slutsky's Theorem

Theorem (Slutsky's Theorem)

Let X_1, \ldots, X_n be a sequence of random variables with $X_n \xrightarrow{d} X$.

Let Y_1, \ldots, Y_n be a sequence of random variables with $Y_n \xrightarrow{P} c$, where c is some constant. Then:

$$X_n + Y_n \xrightarrow{d} X + c$$
$$X_n Y_n \xrightarrow{d} cX$$

2801 note: Can replace $X_n \xrightarrow{\mathcal{D}} X$ with $X_n \xrightarrow{P} X$!

★ Central Limit Theorem ★

★ Theorem (CLT) ★

For a sequence of i.i.d. r.v.s X_1, \ldots, X_n with mean μ and finite variance σ^2

$$rac{\overline{X_n}-\mu}{\sigma/\sqrt{n}} \stackrel{d}{
ightarrow} \mathcal{N}(0,1)$$

where $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$

(In the special case that the X_i 's are normally distributed, the LHS is standard-normal distributed.)

Key property of the CLT

The actual distribution of X_1, \ldots, X_n does not matter.

Rui Tong (UNSW Society of Statistics)

MATH2801/2901 Final Revision

29 May 2018 94 / 100

(日) (四) (王) (王) (王)

Example (Libo's notes)

Australians have average weight about 68 kg and variance about 16 kg². Suppose 40 random Australians are chosen. What is the (approximate) probability that the average weight of these Australians is over 80?

Let X_1, \ldots, X_{40} be the weights of the Australians.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト …

Example (Libo's notes)

Australians have average weight about 68 kg and variance about 16 kg². Suppose 40 random Australians are chosen. What is the (approximate) probability that the average weight of these Australians is over 80?

Let X_1, \ldots, X_{40} be the weights of the Australians. Then n = 40, $\mu = 68$ and $\sigma = 4$, so by the CLT:

$$\frac{\overline{X}-68}{4/\sqrt{40}} \stackrel{d}{\rightarrow} Z$$

where $Z \sim \mathcal{N}(0, 1)$.

イロト 不得 トイヨト イヨト 二日

Example (Libo's notes)

Australians have average weight about 68 kg and variance about 16 kg². Suppose 40 random Australians are chosen. What is the (approximate) probability that the average weight of these Australians is over 80?

$$\therefore \mathbb{P}(\overline{X_{40}} > 80) = \mathbb{P}\left(\frac{\overline{X_{40}} - 68}{4/\sqrt{40}} > \frac{80 - 68}{4/\sqrt{40}}\right) \\ \approx \mathbb{P}\left(Z > \frac{80 - 68}{4/\sqrt{40}}\right)$$

Rui Tong (UNSW Society of Statistics)

3

Example (Libo's notes)

Australians have average weight about 68 kg and variance about 16 kg². Suppose 40 random Australians are chosen. What is the (approximate) probability that the average weight of these Australians is over 80?

$$\therefore \mathbb{P}(\overline{X_{40}} > 80) = \mathbb{P}\left(\frac{\overline{X_{40}} - 68}{4/\sqrt{40}} > \frac{80 - 68}{4/\sqrt{40}}\right)$$
$$\approx \mathbb{P}\left(Z > \frac{80 - 68}{4/\sqrt{40}}\right)$$
$$= \mathbb{P}(Z > 3\sqrt{40})$$
$$= 1 - \text{pnorm}(3 + \text{sqrt}(40))$$
or pnorm(3 + sqrt(40), lower.tail=FALSE)

Remark: Averages v.s. Sums

Earlier: CLT for averages.

If we consider
$$S = \sum_{i=1}^n X_i$$
, we have $rac{S-n\mu}{\sigma\sqrt{n}} \stackrel{d}{ o} \mathcal{N}(0,1).$

We call this the CLT for sums.

3

(日) (周) (三) (三)

Quick remark: Continuity correction for discrete random variables

- Not examinable for 2801
- Most likely not examinable either for 2901

Rui Tong (UNSW Society of Statistics) MATH2801/2901 Final Revision

Lemma (Normal Approximation to Binomial)

Let $X \sim Bin(n, p)$, which is a sum of *n* independent Ber(p) r.v.s. Then

$$rac{X-np}{\sqrt{np(1-p)}} \stackrel{d}{
ightarrow} \mathcal{N}(0,1)$$

Rui Tong (UNSW Society of Statistics) MATH2801

29 May 2018 98 / 100

3

過 ト イヨ ト イヨト

イロト 不得下 イヨト イヨト

98 / 100

Approximating a Binomial with a Normal

Example

An unfortunate soul decided to sit his exam despite having a migraine and the flu. Fortunately, it was not a university exam, and the paper involved only 200 multiple choice questions with 5 options. Therefore, he randomly guesses every answer. What is the (approximate) probability he fails?

Let X be how many he gets correct. Then $X \sim Bin(200, \frac{1}{5})$.

Example

An unfortunate soul decided to sit his exam despite having a migraine and the flu. Fortunately, it was not a university exam, and the paper involved only 200 multiple choice questions with 5 options. Therefore, he randomly guesses every answer. What is the (approximate) probability he fails?

Let X be how many he gets correct. Then $X \sim Bin(200, \frac{1}{5})$. We may approximate X with $Y \sim \mathcal{N}(40, 32)$. Then,

 $\mathbb{P}(X < 100) \approx \mathbb{P}(Y < 100)$

3

・ロト ・四ト ・ヨト ・ヨトー

Example

An unfortunate soul decided to sit his exam despite having a migraine and the flu. Fortunately, it was not a university exam, and the paper involved only 200 multiple choice questions with 5 options. Therefore, he randomly guesses every answer. What is the (approximate) probability he fails?

Let X be how many he gets correct. Then $X \sim \text{Bin}(200, \frac{1}{5})$. We may approximate X with $Y \sim \mathcal{N}(40, 32)$. Then,

$$\mathbb{P}(X < 100) \approx \mathbb{P}(Y < 100)$$
$$= \mathbb{P}\left(\frac{Y - 40}{\sqrt{32}} < \frac{100 - 40}{\sqrt{32}}\right)$$
$$= \mathbb{P}\left(Z < \frac{60}{\sqrt{32}}\right)$$
$$= \mathbb{P}(Z < 10.6066)$$

Example

An unfortunate soul decided to sit his exam despite having a migraine and the flu. Fortunately, it was not a university exam, and the paper involved only 200 multiple choice questions with 5 options. Therefore, he randomly guesses every answer. What is the (approximate) probability he fails?

Let X be how many he gets correct. Then $X \sim \text{Bin}(200, \frac{1}{5})$. We may approximate X with $Y \sim \mathcal{N}(40, 32)$. Then,

$$\mathbb{P}(X < 100) \approx \mathbb{P}(Y < 100)$$

$$= \mathbb{P}\left(\frac{Y - 40}{\sqrt{32}} < \frac{100 - 40}{\sqrt{32}}\right)$$

$$= \mathbb{P}\left(Z < \frac{60}{\sqrt{32}}\right)$$

$$= \mathbb{P}(Z < 10.6066) \qquad \text{Oh my...}$$

イロト 不得下 イヨト イヨト

Ending note for today

Whenever you find the probability/density function, always specify what range it's defined over!!!

Rui Tong (UNSW Society of Statistics) MATH2801

MATH2801/2901 Final Revision

29 May 2018 99 / 100

3

(日) (周) (三) (三)

Appendix: R

Some examples with Bin(n, p):

- dbinom(x, size=n, prob=p) $= \mathbb{P}(X = x)$
- pbinom(x, size=n, prob=p, lower.tail=TRUE) $= \mathbb{P}(X \leq x)$
- pbinom(x, size=n, prob=p, lower.tail=FALSE) $= \mathbb{P}(X > x)$
- qbinom(k, size=n, prob=p, lower.tail=TRUE) = k-th quantile = Solution to $\mathbb{P}(X \le x) \le k$

Some examples with $\mathcal{N}(\mu, \sigma^2)$

- pnorm(x, mean=mu, sd=sigma, lower.tail=TRUE) $= \mathbb{P}(X \leq x)$
- qnorm(k, mean=mu, sd=sigma, lower.tail=TRUE) = k-th quantile = Solution to $\mathbb{P}(X \le x) \le k$

rnorm(n, mean=mu, sd=sigma) just randomly generates a bunch of values from $\mathcal{N}(\mu, \sigma^2)$ for you.

Rui Tong (UNSW Society of Statistics)

MATH2801/2901 Final Revision

29 May 2018 100 / 100